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A B S T R A C T

The pulp and paper (P/P) and food sectors are the third- and fifth-largest industrial energy consumers in the
United States, with total on-site energy consumption of 2,039 TBtu and 1,144 TBtu, respectively. Thermal drying
processes for moisture removal, which are energy-intensive, play a critical role in both industries. This study is
the first to evaluate state- and national-level US drying energy demand for these sectors from 2020 to 2050. To
complete this evaluation, we developed a thermodynamic modeling framework integrated with economic and
environmental models to compute product-specific drying energy intensity and estimate the sector-specific costs
and emissions profiles associated with drying operations. The model-predicted energy intensity was validated
against the literature. Using current and projected annual production volumes in these sectors, we estimated total
drying energy use. Results indicate that drying accounts for 22 % of total energy consumption in the P/P sector
and 10 % in the food sector. The estimated annual energy cost (2020) to operate thermal dryers is $919 M in the
P/P sector and $417 M in the food sector. Additionally, drying contributes to 25 % of total CO2e emissions in the
P/P sector (including biogenic) and 15 % of emissions in the food sector. Regional performance shows that the
Southern US is the leading energy consumer for P/P drying, whereas the Midwest leads in food drying. This study
presents both potential solutions to enhance drying efficiency and barriers to implementation. Energy efficiency
improvements, low-carbon fuels, and electrification are discussed as key pathways for reducing costs and opti-
mizing industrial drying processes.

Introduction

The US industrial sector is a substantial energy consumer and carbon
dioxide equivalent (CO2e) emitter, accounting for 32 % (19,436 TBtu) of
total economy-wide energy consumption in 2018 and 1,903 MMT of
CO2e emissions in 2022 [1,2]. Within the industrial sector, two sub-
sectors are the third- and fifth-largest industrial energy consumers in the
United States—the pulp and paper (P/P) and food sectors consumed
2,039 and 1,144 TBtu of on-site fuel, respectively, in 2018 [3]. Process
heating and indirect boiler combined use account for 45.3 % and 39.0 %
of the total natural gas consumption in the food and P/P subsectors,
respectively [3], demonstrating the importance of these processes in
these sectors’ total energy consumption. Currently, natural gas, biomass,
and coal are the primary fuel sources for the food sector, whereas the P/

P sector relies on a mix of black liquor, natural gas, and biomass [4].
Industrial drying—an integral part of products manufacturing in

both the food and P/P sectors—is a process heating operation aimed at
removing volatile substances and moisture to yield a desired dried solid
product. In the food industry, drying is essential for preservation
because it inhibits the growth of bacteria, molds, and yeasts, thereby
enhancing supply chain efficiency, product quality, and shelf life and
enabling diverse product offerings [5,6]. In the P/P industry, drying is
crucial for achieving the mechanical properties required for paper us-
ability and stability [7] and for market pulp production.

The global market value for industrial drying, estimated at approx-
imately $12.5 billion as of 2024, is driven by the growing demand for
efficient drying solutions that specifically meet strict product quality
standards and extend shelf life [8]. In the US, the industrial dryer market
exceeded $1.8 billion in 2024 and is projected to grow at a compound
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annual growth rate of about 5.6 % from 2025 to 2034 [9].
Thermal dryers—the primary technology employed in the food and

P/P sectors—use heat to evaporate moisture from products. In the P/P
sector, contact multicylinder dryers, which use steam as the primary
energy source, are predominant [7]. Conversely, the food sector em-
ploys a variety of dryer types tailored to the specific requirements of
each subsector, with convective and contact dryers most commonly used
[10].

Convective dryers, which rely on convection as the primary heat
transfer mechanism, can operate as either continuous or batch systems.
Common types of convective dryers include rotary drum, tunnel, fluid-
ized bed, pneumatic, spouted, spray, and chamber; most of these use hot
air or flue gases as the heat transfer medium. In contrast, indirect or
contact dryers use hot water or steam to heat a material, transferring
heat through a surface to dry the charged material via conduction. The
primary types of contact dryers—drum and belt—are continuous sys-
tems [10].

Several studies have reviewed current drying technologies and
highlighted their advantages, disadvantages, and future potential
[10–13]. For the food sector, Routray et al. [13] explored both con-
ventional and emerging drying technologies, and Calín-Sánchez et al.
[12] provided a critical comparison of traditional and novel methods. Li
et al. [11] analyzed various dryer types—including convective, rotary,
and infrared—and found energy consumption ranges from 142 to 4,841
Btu/lbw, depending on dryer type, temperature gradients, and pre- and
post-treatment steps. High exergy losses were associated with systems
involving large temperature differences, such as combustion.

Other studies tied to the food sector focused on grain and fluidized
bed drying. Chojnacka et al. [5] and Mondal and Sarker [14] assessed
energy use and emissions in grain drying. Sivakumar et al. [15] and
Majumder et al. [16] examined fluidized bed dryers for crops like tea
and rice, discussing sustainability and quality impacts. Spray drying also
was evaluated, with Woo and Bhandari [17], Moejes et al. [18], and
Lisboa et al. [19] emphasizing energy efficiency and system
optimization.

In the P/P sector, which involves fewer materials and specificities
than those of the food sector, the volume of literature is smaller but still
significant. Stenström [20] reviewed major studies from 2000 to 2018

related to paper dryers, including condebelt, heated cylinders, impulse
drying, and infrared drying; review topics included operational aspects
such as energy consumption and heat and mass transfer phenomena.
Laurijssen et al. [21] highlighted the prevalence of different dryer types
in the P/P sector, showing that 85 %–90 % of dryers used are multi-
cylinder models, followed by Yankee (4 %–5%), infrared (3 %–4%), and
impingement dryers (2 %–3%). Multicylinder dryers are common in
major subsectors such as paper, paperboard, and pulp, whereas Yankee
dryers are predominantly used for tissue products, which are not
covered in this paper.

Numerous studies have used mathematical and numerical models to
quantify energy use in drying processes for various foods and the P/P
sector. Perazzini et al. [22] created an instantaneous energy and exergy
model for wheat drying., based on heat and mass balances. Tripathy
et al. [23] and Akpinar et al. [24] applied similar methods to potatoes
and pumpkins, respectively. Tripathy and Kumar [25] used a general
approach to predict food temperatures during drying. Lisboa et al. [19]
mathematically modeled spray drying of milk, coffee, and juice. Dincer
and Sahin [26] developed a novel exergy model for drying in general,
while Kinstrey andWhite [27] estimated minimum energy needs for P/P
drying systems.

The US Department of Energy (DOE) has reported briefly on energy
consumption estimations for drying processes in the US [28,29]. In
2017, DOE analyzed energy use in the food sector, providing energy
intensity data for dryers in major subsectors (e.g., dairy, animal
slaughter and processing, fruits and vegetables processing, sugar
manufacturing, and grain and oilseed milling) [29]. The report detailed
production levels and on– and off-site energy consumption, presenting
scenarios for energy reduction using state-of-the-art, practical mini-
mum, and thermodynamic minimum technologies. Similarly, in 2015,
DOE conducted a study on the P/P manufacturing sector, estimating an
annual energy consumption of approximately 430 TBtu for industrial
dryers [28]. The report also provided state-level production and iden-
tified energy intensity reduction opportunities.

Additional studies have further explored the energy intensity of
drying processes [30–32]. For example, Thirumaran et al. [33] reported
energy use in the paper and paperboard industry, estimating an energy
intensity of 4.05 MMBtu/ton and total energy consumption of 219.71

Nomenclature

Symbols and Units
aw Water activity [-]
CI Carbon intensity [CO2e/Btu]
CO2e emissions CO2e emissions [MT CO2e]
cp,P Specific heat of the product [kJ/kg-K]
cp,P,d Specific heat of the product on a dry basis [kJ/kg-K]
cp,P,w Specific heat of the product on a wet basis [kJ/kg-K]
cp,w Specific heat of water [kJ/kg-K]
EC Energy mix [%]
ELw Latent heat of water [Btu]
Emin Minimum energy to evaporate the moisture [Btu]
EP Energy price [$/Btu]
Esp Sensible heat of the product [Btu]
Esw Sensible heat of the water [Btu]
ET Total energy consumption [Btu]
EU Energy consumption [Btu]
hgw Specific latent heat of water [kJ/kg-K]
mp Mass of the dry product [lb]
mT Total mass of the product [lb]
mw Mass of water [lbw]
n Number of fuel types [-]
ns Total number of states [-]

SEC Specific energy consumption [Btu/lb or Btu/lbw]
TEC Total energy cost [$]
Xdb Moisture content on a dry basis [-]
Xwb Moisture content on a wet basis [-]
Δmw Mass of water evaporated [lbw]
ΔT Difference between the inlet and outlet of the charged

material [◦C]
ηD Drying efficiency [-]

Subscription
f Final
i Initial
mp Based on the mass of moisture removed during the drying

process
mw Based on the mass of the dry product
w Water

Abbreviations
CO2e carbon dioxide equivalent
DOE US Department of Energy
FDA US Food and Drug Administration
NAICS North American Industry Classification System
P/P pulp and paper
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TBtu/year. Subsector-specific analyses have also been conducted, such
as a study on wet corn milling by Galitsky et al. [34], which examined
energy consumption for a facility producing 100,000 bushels per day.
This study, which specified electricity, steam, and fuel use, detailed
energy intensities for several processes (e.g., germ dewatering and
drying, starch drying, fiber washing/drying, gluten thickening and
drying, and gluten feed drying). Brown et al. [35] further investigated
energy intensities across various industries, including corn milling, an-
imal slaughter and processing, dairy, cane sugar, soybeans, beet sugar,
and P/P sectors. These studies collectively provide a comprehensive
understanding of energy usage and opportunities for efficiency im-
provements in drying processes across diverse applications.

Despite the broad availability of sources describing the energy in-
tensity of some subsectors covered in this study, many of these sources
are outdated, lack comprehensive data on total energy consumption for
specific drying processes or subsectors, or present widely divergent re-
sults. A major limitation in the literature is the lack of standardized
methodologies for estimating drying energy demand, which is often
influenced by variability in operational parameters, fuel mix, and drying
technologies across facilities. Moreover, there is no focused analysis on
how energy consumption for drying processes in the food and P/P sec-
tors is expected to evolve over the coming decades. Such analysis is
crucial, given the significance of these industries to US energy con-
sumption. Additionally, the complexity and scale of the US necessitates a
state-level understanding of these processes to assess how local policies,
energy demand, and other regional factors (e.g., fuel costs) might in-
fluence future changes in drying technologies.

The objective of this study is to provide a comprehensive analysis of
national and state-level energy, environmental, and economic effects
associated with drying processes in the US food and P/P sectors. Using
publicly available data (literature and industry) and assuming the
continued use of currently deployed drying technologies, we project
energy demand, CO2e emissions, and costs from 2020 to 2050 to
establish a baseline scenario. These two sectors were chosen because
they account for a significant portion of drying energy use in the US
manufacturing sector, based on Cresko et al. [29]. The present study
focuses exclusively on dedicated dryers and did not attempt to estimate
drying energy use that may have occurred as part of other processes (e.
g., baking and frying). To the best of the authors’ knowledge, the current
study is the first to present a detailed breakdown of energy usage across

specific subsectors at the state level, incorporating critical parameters to
develop a framework that calculates the energy consumption of drying
processes.

This analysis is valuable for both industry and academia, serving as a
foundational tool for future research and decision-making. Projections
are used to evaluate the effects of drying processes and to identify trends
and opportunities for improvement. Additionally, this study explores
energy efficiency pathways, including their barriers, solutions, and
policies to enable these transitions.

Methodology

This section outlines the data collection strategy, the energy, eco-
nomic, and environmental models proposed in this study, and the vali-
dation procedures employed.

The Excel-based framework used to estimate state- and national-level
energy consumption, cost, and CO2e emissions is illustrated in the flow
diagram in Fig. 1. As shown in the figure, the process begins with data
collection (see Section 2.1). Next, the specific energy consumption (SEC)
is calculated for all products (see Section 2.2.1). By using production
data for each state (see Section 2 of the Supplementary Material [SM]),
the state-level energy consumption is then determined. Subsequently,
state-level energy costs and CO2e emissions are calculated based on
energy mix, state-specific energy prices and the carbon intensity of each
energy source (see SM, Section 2), as detailed in this paper in Sections
2.2.2 and 2.2.3, respectively. Finally, national-level energy consump-
tion, costs, and CO2e emissions are obtained by aggregating the results
across all states.

Data collection

To calculate the SEC for each subsector categorized by the North
American Industry Classification System (NAICS), we collected the in-
puts in Fig. 1 and the parameters outlined in Table 1. Data presented in
Table 1 include reported average values (in bold and italics) and the
corresponding most common minimum and maximum input values to
capture the typical range of variability.

Fig. 1. Framework for estimating state- and national-level energy use, costs, and CO2e emissions.
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Table 1
Average drying efficiency; the minimum, average (in bold and italic type), and maximum initial and final moisture content; specific heat; and the minimum, average
(in bold and italic type), and maximum drying temperature for the most typical dryer types used in each subsector and in that subsector’s products.

NAICS
Class.

Subsector Main
Product

Subproduct Type of
Dryer

Drying
Efficiency
(%)

Initial
Moisture
Content (%)

Final
Moisture
Content (%)

Specific Heat (kJ/
[kg•K])

Temperature
(◦C)*

3112 Grain and Oil
Seed Milling

Soybean Soybean
Flake

Rotary
Indirect

52 18 | 20 | 22
[36]

12 [36,37] cp,P = 1.444 +
(
1+4.06x10− 2Xdb

)
[38]

50 | 70 | 80
[39]

Soybean Oil Fluidized Bed 48 15 | 17.5 | 20
[10,36,40–47]

10 | 11.5 | 13
[10,36,40–47]

cp,P = 1.444 +
(
1+4.06x10− 2Xdb

)
[38]

30 | 45 | 60
[42–47]

Corn Corn Starch Flash 50 33 | 37.5 | 42
[48,49]

3 | 4 | 5
[48,49]

cp,P =

1.64 − 1.91xXwb[50]
54 | 77 | 100
[35,51]

Corn Germ Rotary
Indirect

52 45 | 52 | 60
[52,53]

1.5 | 3 | 4
[34,53,54]

cp,P = 1.470 +

0.036Xwb,
1 < Xwb < 30 % (Xwb)
[10]

95 | 105 | 115
[35,54]

Gluten
Thickening
and Drying

Flash 50 14 | 17 | 20
[55,56]

10 | 11 | 12
[55,56]

cp,P = 1.470 +

0.036Xwb,
1 < Xwb < 30 % (Xwb)
[10]

50 | 55 | 60
[57]

Fiber Drying Rotary
Indirect

52 10.0 [34] 3.4 | 6.2 | 9
[58]

cp,P = 1.470 +

0.036Xwb,
1 < Xwb < 30 % (Xwb)
[10]

30 | 45 | 60
[59]

Gluten Feed Flash 50 40 | 50 | 60
[56,60]

10 | 11 | 12
[61,62]

cp,P = 1.470 +

0.036Xwb,
1 < Xwb < 30 % (Xwb)
[10]

50 | 55 | 60
[57]

Dextrose
Drying

Fluidized Bed 48 15 | 18.5 | 22
[63]

7.5 | 8.5 | 9.5
[63–65]

cp,P = 1.470 +

0.036Xwb,
1 < Xwb < 30 % (Xwb)
[10]

50 | 77 | 105
[35]

Breakfast
Cereal

Breakfast
Cereal (Pre-
Dryer)*

Rotary
Indirect

52 28 | 32 | 36
[66–69]

12 | 17 | 22
[66–69]

2.28 [70] 65 | 80 | 95
[66–69]

Breakfast
Cereal (Main
Dryer)*

Conveyor 40 12 | 15 | 18
[66–69]

1 | 2.5 | 4
[66–69]

1.70 [70] 120 | 148 | 175
[66–69]

Rice Rice Fluidized Bed 48 20 | 22.5 | 25
[14,71–73]

9 | 11.5 | 14
[14,71–73]

cp,P = 1.197 +

0.038Xwb[74]
40 | 43 | 45
[71,72]

Malt Malt (for
Beer)**

Drum 47 45 [75] 3 | 4 | 5 [75] 2.16 [75] 125 | 153 | 180
[75]

3113 Sugar Cane Sugar Cane Sugar Spray Dryer 46 2 | 2.5 | 3 [76] 0.02 | 0.3 | 1.1
[76,77]

cp,P = 0.491 +

0.501Xdb +

0.025X2db[78]

70 | 85 | 105
[77]

Beet Sugar Beet Sugar
(Granulator)

Spray Dryer 46 2 | 2.5 | 3 [76] 0.02 | 0.3 | 1.1
[76,77]

cp,P = 0.491 +

0.501Xdb +

0.025X2db[78]

70 | 85 | 105
[77]

Beet Sugar
(Pulp)

Drum 47 70 | 76 | 82
[79–81]

10 | 11 | 12
[81–83]

cp,P = 1.5 +

4.18Xwb[84]
60 | 105 | 150
[80,81,83,85]

3115 Dairy Milk Powdered
Dry Milk

Spray Dryer 46 45 | 50 | 55
[86,87]

2 | 3 | 4
[86,87]

1.50 [88] 100 | 150 | 200
[87,89]

Powdered
Whey

Spray Dryer 46 40 | 45 | 50
[90]

2 | 3 | 4
[86,87]

1.50 [88] 100 | 150 | 200
[87,89]

Cheese Cheese
Powder**

Spray Dryer 46 45 | 52.5 | 60
[91]

3 | 4 | 5 [92] 3.00 60 | 125 | 190
[93]

3116 Slaughtering
and Processing

Red Meat Meal Blood Spray Dryer 46 60 | 62 | 63
[94,95]

2% | 6 | 10
[10,95–98]

1.50 [88,99] 80 | 100 | 120
[95,97,98,100]

Jerky** Conveyor 40 60 [101,102] 15 | 20 | 25
[102–104]

3.00 [105] 54 | 57 | 60
[101,104]

3114 Fruits and
Vegetables

Apple Apple Conveyor 40 80 [106] 24 [106] 2.00 [84] 50 | 55 | 60
[10]

Grape Grape Conveyor 40 70 | 75 | 80
[106]

15 | 18 | 20
[106]

2.00 [84] 50 | 55 | 60
[10]

Other
Noncitrus

Other
Noncitrus

Conveyor 40 75* 15* 2.00 [84] 65 [10]

Potato Potato Conveyor 40 75 | 80 | 85
[10]

10 | 12 | 14
[10]

2.00 [84] 70 [10]

Onion Onion Conveyor 40 80 | 83 | 85
[10]

8 [10] 2.00 [84] 50 [10]

(continued on next page)
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Mathematical models

Energy model
The minimum energy (Emin) required to dry the charged material

from initial to final moisture content can be expressed as follows:

Emin = Esp +Esw +ELw = mPcp,PΔT+mw,icp,wΔT+
(
mw,i − mw,f

)
hgw (1)

where Esp, Esw, and ELw represent the sensible heat of the product, the
sensible heat of the water, and the latent heat of water, respectively. The

term mp is the mass of the dry product; cp,P and cp,w are the specific heat
capacity of the product and water, respectively; mw,i and mw,f are the
initial and final mass of water in the charged material, respectively; hgw
is the specific latent heat of water (assumed to be constant at 2,260 kJ/
kg); and ΔT is the difference between the inlet and outlet temperatures
of the charged material.

The energy consumption, considering the distinct types of dryers, is
given by Eq. (2):

Table 1 (continued )

NAICS
Class.

Subsector Main
Product

Subproduct Type of
Dryer

Drying
Efficiency
(%)

Initial
Moisture
Content (%)

Final
Moisture
Content (%)

Specific Heat (kJ/
[kg•K])

Temperature
(◦C)*

Juice Juice
Powder**

Spray Dryer 46 25 | 27.5 | 30
[107]

2 | 3 | 4 [107] 2.83 [108] 80 | 130 | 180
[107]

3111 Dog and Cat
Food
Manufacturing

Pet Food Dry Pet
Food*

Conveyor 40 25 | 27.5 | 30
[109,110]

10 | 11 | 12
[109,110]

2.00 [111] 121 [110,112]

3117 Seafood
Product
Preparation
and Packaging

Fish Meal Fish Meal** Rotary
Indirect

52 50 [113] 7 | 9.5 | 12
[113]

2.03 [113] 90 [113]

3118 Bakeries,
Tortilla, Dry
Pasta

Pasta* Dry Pasta* Conveyor 40 29 | 30 | 31
[114]

12 | 12.5 | 13
[114]

cp,P = 1.44 +

2.74Xwb[115]
60 | 83 | 105
[116]

3119 Coffee and Tea Coffee* Ground
Coffee**

Spray Dryer 46 60 | 65 | 70
[117]

2.5 | 3.25 | 4
[117]

cp,P = 0.248 +

8.14Xwb[118]
88 | 99 | 110
[117]

Coffee and Tea Tea Tea** Conveyor 40 40 | 45 | 50
[10,119,120]

4 | 5 | 6
[10,119,120]

3.50 [121] 60 | 110 | 160
[10]

All Other
Miscellaneous
Food
Manufacturing

Yeast Yeast** Fluidized Bed 48 65 | 70 | 75
[122]

4 | 5 | 6 [122] 1.4 | 1.80 50 | 55 | 60
[122]

322 P/P Pulp Pulp Mill Multicylinder 43.5 82 | 100 | 122
[21,123–125]

11 [126,127] 1.25 [27] 75 [10]

Paper Paper Mill Multicylinder 43.5 82 | 100 | 122
[21,123–125]

5 | 8 | 10
[10,21,124]

1.25 [27] 115 [27]

Paperboard Paperboard
Mill

Multicylinder 43.5 82 | 100 | 122
[21,123–125]

8 | 9 | 11
[128,129]

1.25 [27] 115 [27]

*Owing to a lack of state-level data and future production projections, these products will be included only in the current national-level 3E analysis.
**Owing to limited available production data, these products are excluded from the scope of this study.

51.5%
48.0% 50.0%

46.0% 47.0%
43.5%

40.0%

28%
32%

40%

28%

19%
23%

32%

75%

64%
60%

64%

75%

64%

48%

0.0%

20.0%

40.0%

60.0%

80.0%

Rotary indirect Fluidized bed Flash Spray Drum Cylinder Conveyor

ycneiciffE
metsyS

gniyr
D

Dryer

Fig. 2. Drying system efficiency of the most common dryers used in the food and P/P sectors.
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EU =
Emin

ηD
(2)

where EU is the energy consumption, and ηD is the drying system
efficiency.

Fig. 2 illustrates the range of drying system efficiency for the most
used conventional thermal dryers in the food and P/P sectors, as re-
ported in the literature [10,14,125]. Drying system efficiency can be
defined in various ways depending on its intended use. Some definitions
include only dryer losses, whereas others also account for upstream
systems and distribution losses. This study uses system-level energy ef-
ficiency, which captures losses at the dryer (e.g., exhaust and wall los-
ses) and generation (e.g. boiler) and distribution. Using system-level
energy efficiency provides a more accurate estimate of actual energy
required relative to the theoretical minimum. Reported literature values
were adjusted to reflect this approach, and the system efficiency ranges
applied for each dryer type are shown in Fig. 2.

SEC is defined as the ratio of energy consumption (EU) to the mass of
moisture removed during the drying process (mw,i − mw,f) or the mass of
the dry product (mp). In this case, the units of evaluation will be Btu/lbw
or Btu/lb, respectively. The following equations illustrate how to
compute SEC, whether based on the water of moisture evaporated [Eq.
(3)] or the dry product mass [Eq. (4)] [130]:

SECmw =
EU

mw,i − mw,f
(3)

SECmp =
EU

mp
(4)

Given the diverse range of products and their varying calculation
methods, this study proposes a framework for estimating the SEC based
on available input data. Depending on the reference, product, and
sector, the moisture content may be reported on a dry (Xdb) or wet (Xwb)
basis, and the SEC can be expressed per unit of evaporated water mass or
dry product mass. Additionally, users may have access to specific heat
data as a function of moisture content (cp,P,w) or as fixed values (cp,P,d).

Fig. 3 illustrates the decision-making process for calculating the SEC
of drying processes based on different moisture content bases (wet or
dry), specific heat capacities (cp,P), and mass considerations. The

framework begins with input parameters: initial and final moisture
content on different basis (Xwb,i, Xwb,f or Xdb,i, Xdb,f), specific heat ca-
pacities of the product (cp,P,w or cp,P,d for the wet basis and the dried
product, respectively), specific heat capacity of water (cp,w), specific
latent heat of water (hgw), and inlet and outlet charged material tem-
peratures (Tin and Tout).

The flowchart in Fig. 3 determines the drying energy calculation
method to be used depending on the availability of the specific heat
capacity of the product on either a wet (cp,P,w) or dry (cp,P,d) basis. Last,
the resulting equation (SEC) is tailored to per-dry mass (SECmp) or total
evaporated water mass (SECmw).

For cases where the cp,P,w is used, the sensible heat of the product
(Esp) already accounts for the sensible heat of the water (Esw). Table 2
summarizes the eight proposed equations, detailing how each can be
used depending on the inputs available.

The total drying energy consumption for a specific product (ET) is
calculated by multiplying the SEC and the total mass of the product.
Because dedicated drying operations typically occur at the final stage of
product processing, the mass of the final product is assumed to equal the

Fig. 3. Proposed framework for energy equation selection based on (1) specific heat (cp,P,w or cp,P,d), (2) moisture content (Xwb,i, Xwb,f or Xdb,i, Xdb,f), and (3) SEC
(SECmp or SECmw).

Table 2
Energy equations depending on available inputs.

Variable Equation Eq.

SECmp ,Xwb ,Cp,P,w
(

1+
Xwb,i

1 − Xwb,i

)

cp,PwΔT +

(
Xwb,i

1 − Xwb,i
−

Xwb,f
1 − Xwb,f

)

hgw
(5)

SECmw ,Xwb ,Cp,P,w
(

1+
Xwb,i

1 − Xwb,i

)

cp,PwΔT
(

Xwb,i
1 − Xwb,i

−
Xwb,f

1 − Xwb,f

) + hgw

(6)

SECmp ,Xdb ,Cp,P,w
(
1+Xdb,i

)
cp,PwΔT +

(
Xdb,i − Xdb,f

)
hgw (7)

SECmw ,Xdb ,Cp,P,w
(
1+ Xdb,i

)
cp,PwΔT

(
Xdb,i − Xdb,f

) + hgw
(8)

SECmp ,Xwb ,Cp,P,d
(

cp,P +
(

Xwb,i
1 − Xwb,i

)

cp,w
)

ΔT +

(
Xwb,i

1 − Xwb,i
−

Xwb,f
1 − Xwb,f

)

hgw
(9)

SECmw ,Xwb ,Cp,P,d
[

cp,P +
(

Xwb,i
1 − Xwb,i

)

cp,w
]

ΔT
(

Xwb,i
1 − Xwb,i

−
Xwb,f

1 − Xwb,f

) + hgw
(10)

SECmp ,Xdb ,Cp,P,d
(
cp,P +Xdb,icp,w

)
ΔT +

(
Xdb,i − Xdb,f

)
hgw (11)

SECmw ,Xdb ,Cp,P,d [
cp,P +Xdb,icp,w

] ΔT
(
Xdb,i − Xdb,f

) + hgw
(12)
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mass of the dried product.
To estimate energy consumption at state and national level for dry-

ing processes, the analysis begins with the total national production for
each product. When state-level distribution data are available, the na-
tional production is allocated across U.S. states using percentage shares
from the literature [28,131–138] (see Section 2 of the SM). Multiplying
these shares by the national production yields state-level production
values. The SEC for drying is then multiplied by each state’s production,
and summing across all states provides the national total. For some
products—specifically dry pet food, breakfast cereal, and dry pasta—-
state-level distribution data are not available, so only national-level
estimates are used. Production projections are available through 2033
[139,140], and are linearly extrapolated to 2050, following the US
Department of Agriculture [140] approach. The analysis assumes that
SEC values, and therefore drying technologies, remain constant
throughout the projection period.

Economic model
The total energy cost for drying is calculated as the sum of the costs

associated with each energy source across all states, as defined in Eq.
(13). Because natural gas and coal prices vary by region, local energy
costs significantly influence overall expenditures. Byproducts such as
biomass and black liquor are also excluded from this calculation because
they incur no direct cost to the facility.

TEC =
∑n

i=1

∑ns

j=1
ETj × ECi × EPi,j (13)

where TEC is the total energy cost for drying, ETj is the energy con-
sumption in the jth state (the value varies depending on the year and the
specific subsector analyzed), ECi is the energy mix of the i th energy
source, EPi,j is the energy price for the i th energy source in the jth state, n
is the number of fuel types for a specific sector, and ns is the total number
of states. The EPi,j values are provided in Section 2 of the SM. Addi-
tionally, the values of ECi can be found in Section 1.3 of the SM. Ac-
cording to DOE [4], the food and beverage sector derives 83 % of its fuel
energy from natural gas, 7 % from biomass, 5 % from coal, and 5 % from
miscellaneous sources.

Within the P/P sector, we categorized the products into market pulp,
virgin paper/paperboard, and recycled paper/paperboard based on mill
types: integrated, pulp, and recycled mills. Fuel energy is obtained in
integrated and pulp mills as follows: 40 % from black liquor, 30 % from
natural gas, 25 % from biomass, and 5 % frommiscellaneous sources. To
simplify the analysis, the 5 % miscellaneous share in both sectors was
excluded, and the remaining values were proportionally adjusted to the
key energy sources. Meanwhile, in recycled mill, 100 % of the fuel’s
energy is assumed to come from natural gas.

Overall, this analysis assumes that all drying operations rely exclu-
sively on on-site fuel combustion, with no contribution from electricity-
generated or purchased steam (either direct or indirect).

Environmental model
To assess the unintended consequences of drying energy consump-

tion, the environmental model aids in computing the emissions associ-
ated with fuel use. The model accounts for CO2e emissions associated
with combustion of a specific type of fuel for drying operation. This
study considers only Scope 1 emissions and does not include upstream
emissions of each fuel delivered.

The calculation of total CO2e emissions (in MT CO2e) per year was
conducted for each sector (CO2e emissions), as detailed in Eq. (14):

CO2e emissons =
∑n

i=1

∑ns

j=1
ETj × ECi × CIi (14)

where CIi is the carbon intensity for the i th energy source. The values of
ECi and CIi can be seen in Section 1.3 of the SM. Note that ETj varies

based on the year and subsector analyzed.

Validation

Table 3 presents input data used to validate the energy model. Note
that a value of 100 % for drying system efficiency is considered for
studies reporting the minimum SEC for drying.

Results

This section provides an overview of the results of this research
effort, including model validation, SEC estimations by subsectors of the
food and P/P sectors, and both the current state of and future projections
for drying processes in the US food and P/P sectors.

Model validation

Fig. 4 compares the proposed model-calculated SEC values with their
corresponding reported values, indicating a± 20 % deviation range. For
food products, the analysis indicates an average error of 15 %, with
absolute differences ranging from 1 % to 31 %. For wood products, the
agreement is notably better, with a maximum difference of only 14 %.

Several factors may contribute to the higher discrepancies observed
for food products, including inaccurate values for specific heat capacity
and unaccounted irreversibilities inherent in combustion processes and
temperature gradients. Section 3 of the SM parametrically analyzed the
equations presented in Table 2, showing how moisture content differ-
ences and thermal properties affect the SEC.

SEC Estimation by subsector

Food subsectors
Fig. 5 presents typical SEC ranges for the food sector, with values

standardized to the SEC per unit of dry product to ensure an accurate,
meaningful comparison. The results reflect how typical maximum and
minimum moisture content differences and drying temperatures affect
the SEC of selected food products, while average values are used for
drying efficiencies.

The figure compares calculated values with benchmarks from Brown
et al. [35], Cresko et al. [29], manufacturing partner communication,
and others [10,34]. The comparisons reveal differences in the estimated
SEC of charged material. Notably, the SEC range calculated by our
framework in most cases aligns with all literature references except that
of Brown et al. [35]. The reason behind the higher reported SEC value in
Brown et al. [35] is unclear but could be attributed to design specificity,
use of an older system, higher inlet moisture content, or a combination
of factors. Details about the various food subsectors follow the figure.

The average calculated SECs for soybeans and soybean flakes are 216
and 152 Btu/lb, respectively. The SEC ranges for soybeans (149–270
Btu/lb) and soybean flakes (48–257 Btu/lb) reflect typical operational
variability in drying processes. These values align closely with results
from Brown et al. [35], which reported SEC values of 157 and 145 Btu/
lb, respectively.

Corn starch drying exhibits an SEC range of 599–908 Btu/lb, similar
to values from Cresko et al. [29] (530 Btu/lb) and Galitsky et al. [34]
(629 Btu/lb). However, Brown et al. [35] reports a significantly higher
SEC of 1,351 Btu/lb, likely because of outdated system efficiencies.

With a calculated SEC range of 899–1,282 Btu/lb, corn germ drying
exhibits considerable variability among references. The range represents
a midpoint relative to reported values. Cresko et al. [29] and Galitsky
et al. [34] report values of 129 and 145 Btu/lb, respectively, whereas
Brown et al. [35] exceeds the maximum range with a significantly
higher value of 1,620 Btu/lb. As shown in Fig. 2 and Table 1, input
variations can lead to a wider range of SEC values. For example, initial
moisture reduction is achieved mechanically, typically via screw
pressing, before final thermal drying to 1.5 %–4%moisture content. The
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efficiency of this process depends on factors such as dryer type, manu-
facturer specifications, equipment age, and technological advancements
[34].

For gluten meal (26–171 Btu/lb) and fiber drying (26–171 Btu/lb),

Cresko et al. [29] and Galitsky et al. [34] align with the lower portion of
the calculated ranges. In the case of gluten feed (589–1,043 Btu/lb), the
reference values are on average 26 % lower than the lower bound of the
calculated range, but they remain within the same order of magnitude,
which indicates reasonable consistency. And finally, for dextrose drying,
Brown et al. [35] reported a value of 150 Btu/lb, which is near the lower
value of the calculated spectrum (149–422 Btu/lb).

Manufacturing partners communication reported an average SEC of
1,020 Btu/lb for breakfast cereal drying, closely aligned with the
average SEC calculated in this study (982 Btu/lb). The range presented
in Fig. 5 (599–1,370 Btu/lb) represents the combined SEC of both the
pre-dryer and the main dryer, as detailed in Table 1.

SEC results for the cane sugar dryer and beet sugar granulator
demonstrate that Brown et al. [35] values fall between theminimum and
average calculated results. These dryers exhibit relatively narrow SEC
ranges, with beet sugar granulator differences reaching a maximum of
61 Btu/lb. In contrast, beet sugar pulp drying shows significant vari-
ability, ranging from 1,374 to 2,201 Btu/lb.

Section 3 of the SM presents a parametric analysis to evaluate the
influence of various parameters on each component of Eq. (1), including
moisture content variations on SEC.

Table 3
Input values used for validation of the energy model.

Product Drying Efficiency
(ηD), %

Initial Moisture
Content (Xdb,i), %

Final Moisture
Content (Xdb,f), %

Specific Heat (Cp,P),
kJ/[kg•K]

Drying
Temperature, ◦C

Ambient Temperature
(Tamb), ◦C

Ref.

Corna 30.0 33.33 17.65 1.48 110 25 [141]
Cornb 100.0 20.48 17.65 1.48 90 20 [142]
Cornb 100.0 25.00 17.65 1.48 90 20 [142]
Soybeana 40.0 33.30 23.50 1.64 110 30 [41]
Soybeana 33.7 24.50 12.91 1.38 100 30 [143]
Soybeana 44.1 24.50 12.91 1.38 100 30 [143]
Soybeana 60.1 24.50 12.91 1.38 100 30 [143]
Soybeana 62.9 24.50 12.91 1.38 100 30 [143]
Soybeana 66.0 24.50 12.91 1.38 100 30 [143]
Woodc 100.0 138.00 5.00 1.25 100 50 [27]
Woodc 100.0 100.00 5.00 1.25 100 50 [27]
Woodc 100.0 42.90 5.00 1.25 100 50 [27]
Woodc 51.2 65.00 15.00 1.70 80 2.2 [144]
Woodb 53.0 50.00 8.00 1.70 80 25 [145]
Dewatered
digestatea

46.5 316.70 9.41 3.00 60 25 [146]

a Method: SECmw, Xwb, Cp,P,w.
b Method: SECmw, Xdb, Cp,P,w.
c Method: SECmp, Xdb, Cp,P,d.

Fig. 4. Comparison of calculated and reported SECs.
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Fig. 5. SEC ranges for drying processes in the food sector compared with values found in the literature.
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P/P subsectors
For the P/P industry, Fig. 6 presents the minimum, mean, and

maximum SEC values calculated using average drying efficiency and
typical moisture content ranges. These results are compared with data
from Theresa Miller [28], Kramer et al. [147], and others [27,125,148].
Most of the values exhibit similar magnitudes—ranging from 1,865 to
3,150 Btu/lb—thus underscoring the validity of the model and its
alignment with existing literature. However, values from Theresa Miller
[28] for pulp drying and Devki Energy Consultancy Pvt. Ltd. [125] for
paper drying are relatively lower than expected.

Current state of drying processes in the US food and P/P sectors

Energy analysis
Energy consumption for various drying processes was calculated as a

product of the average SEC results from Section 3.2 and the production
volumes for 2020 of final products, provided in SM Section 2.

Fig. 7 illustrates drying energy consumption for the food and P/P
sectors in the US, highlighting the contributions of key subsectors to
overall energy use in the manufacturing sector [10,74,119,120]. The
food sector, shown on the left in Fig. 7, consumed nearly 112.1 TBtu of
drying energy in 2020. Soybean processing at 33 % of total energy use
emerged as the sector’s most energy-intensive drying process, followed
by corn processing (21 %), fruits and vegetables (12 %), dry pet food (10
%), sugar production (8 %), dairy (5 %), rice (4 %), breakfast cereal (3
%), dry pasta (2 %), and animal slaughter (2 %). The total energy con-
sumption by the food sector in 2018 was 1,144 TBtu [3], of which 10 %
was related to the thermal drying process. When considering process
heating energy demand, drying operations account for about 22 % of
energy consumption in the food sector.

In 2020, the P/P sector accounted for approximately 442 TBtu of
energy consumption for drying processes. Of this total, 57 % was
attributed to paperboard (250 TBtu), 32 % to paper (139.8 TBtu), and
12 % to pulp (52.3 TBtu). Of total paper production, 96 % was virgin
(116.7 TBtu) and 4 % was recycled (23.1 TBtu). For paperboard, 81 %
was virgin (202.4 TBtu) and 19 % was recycled (47.7 TBtu).

Energy consumption for the drying process in the P/P sector was
480.6 TBtu in 2002 [27] and 430 TBtu in 2010 [28]. These figures
reflect a 2.8 % increase since 2010 but an 8.0 % decrease compared with
2002. In 2018, the P/P sector consumed 2,039 TBtu of energy [3], with
approximately 21.7 %—a significant percentage—allocated to thermal
drying processes. This share aligns with findings from Theresa Miller
[28], which indicate that around 20 % of the sector’s energy con-
sumption is dedicated to drying operations. For process heating in the P/
P sector, drying operations account for approximately 58 % of energy
use.

Fig. 8 shows the energy distribution of drying processes for specific
products within the food sector. In the soybean subsector, soybean meal
drying accounts for 58 % of total energy use (21.3 TBtu). In the corn

subsector, 41 % of drying energy is used for corn starch (9.9 TBtu),
followed by 27 % for gluten feed (6.4 TBtu) and 26 % for corn germ (6.1
TBtu). In the fruits and vegetables subsector, potato drying leads with
54 % of energy consumption (7.3 TBtu), followed by grape drying at 22
% (2.9 TBtu). In the sugar subsector, beet sugar pulp drying dominates
with 86 % of energy use (8.0 TBtu). Finally, in the dairy subsector,
powdered dry milk dryers account for 72 % of drying energy (3.9 TBtu).

For the assessment of state-level production effects, the distribution
of energy consumption for drying across the examined sectors is shown
in Fig. 9.

For the food sector, Illinois leads with an energy consumption of 9.83
TBtu (10.4 %), followed closely by Iowa at 9.79 TBtu (10.3 %), Cali-
fornia at 5.86 TBtu (6.2 %), and Minnesota at 5.80 TBtu (6.1 %). The
high energy usage in Illinois, Iowa, and Minnesota is driven primarily by
grain drying processes (specifically soybeans and corn, which dominate
production in these states). California, although not a major grain pro-
ducer, stands out because of its substantial fruits and vegetables drying
activities—93 % of grape production [149], 24.5 % of onion production
[150], 2.1 % of potato production [132], 2 % of apple production [151],
and 34.2 % of other noncitrus fruits [133].

For the P/P sector, the southern region dominates energy con-
sumption, with Georgia consuming 52.6 TBtu (11.9 %), followed by
Alabama at 43.7 TBtu (9.9 %), Florida at 27.1 TBtu (6.1 %), and Loui-
siana at 26.3 TBtu (6.0 %). These states host a significant concentration
of paperboard, paper, and pulp mills, which contribute to this high en-
ergy demand. Outside the southern region, Wisconsin also exhibits
notable energy consumption levels at 28.8 TBtu (6.5 %).

Economic analysis
Estimated drying energy costs for both sectors, based on 2020 pro-

duction volumes and state-level energy prices (see SM, Section 2), are
shown in Fig. 10. The total drying energy cost for the P/P sector is
estimated at $919 M, whereas the food sector accounts for $417 M.

In the food sector, the cost distribution across subsectors follows the
same rankings as those of energy consumption. The soybean subsector
accounts for the largest share of drying costs at 30 %, followed by corn
(19 %), fruits and vegetables (17 %), sugar (9 %), dry pet food (8 %),
dairy (7 %), rice (5 %), breakfast cereal (3 %), dry pasta (2 %), and
animal slaughter (2 %). Owing to variations in state energy prices, the
percentage contribution to total cost differs from the energy consump-
tion breakdown (see Fig. 7). For instance, the fruits and vegetables
subsector has a greater effect on total drying costs compared with its
energy consumption share, primarily because of the concentration of
production in California, where energy prices are well above the na-
tional average.

In the P/P sector, the pulp and virgin paper/paperboard subsectors
notably obtain approximately 68 % of their energy from waste biomass
and black liquor—byproducts of the production process; this approach
helps lower overall energy costs by offsetting the use of purchased fuels.
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Fig. 6. SEC ranges for drying processes in the P/P sector compared with values found in the literature.
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Conversely, recycled paper and paperboard production require primary
fuels (i.e., natural gas), resulting in 12 % and 25 % contributions,
respectively, to the sector’s total drying energy costs. Virgin paperboard
remained the highest contributor, with approximately $310 M spent on
drying, followed by recycled paperboard, which incurred about $231 M
in drying-related costs.

Fig. 11 illustrates the energy cost associated with drying each
product in the food sector. The contribution of each product remains
roughly consistent with the trends observed in the energy analysis sec-
tion, except for the sugar subsector, which is now in fourth place.
Notable differences emerge within the fruits and vegetables subsector:
dried potatoes account for the largest share of energy costs at 44 %,
followed by grapes at 29 %, and onions at 14 %. These variations are
primarily driven by regional energy prices.

Fig. 12 presents state-level energy costs associated with drying pro-
cesses in the food and P/P sectors. The figure highlights the influence of

regional energy prices, particularly that of natural gas, which accounts
for 87.4 % of energy use in the food sector and 74 % of energy use in the
P/P sector.

In the food sector, California has a high relative energy cost of $40.5
M (11.1 %) due to elevated energy prices, despite ranking lower in total
energy consumption. Iowa is the second with an energy cost of $40.3 M
(11.1 %). Illinois, the most energy-intensive state, ranks third in eco-
nomic terms at $38.8 M (10.6 %). Notably, Florida also plays a signifi-
cant role in energy costs, contributing $25.3 M (6.7 %).

In the P/P sector, Georgia leads in drying energy costs, reaching
$86.3 M (9.4 %) because of high production volumes. Pennsylvania is
ranked second at $77.7 M (8.4 %), largely owing to elevated energy
prices—natural gas averaged $8.27/MMBtu in the state (see SM Section
2). Alabama ($68.7 M), Florida ($62.9 M), andWisconsin ($58.3 M) also
report substantial drying energy costs owing to a combination of pro-
duction levels and fuel prices. Washington and Maine stand out as well,
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accounting for 5.4 % and 4.6 % of total sector drying costs, respectively,
largely because of their higher-than-average energy prices.

Environmental analysis
Fig. 13 presents the CO2e emissions for the food and P/P sectors,

highlighting their relative contributions. The P/P sector emitted about
33,995 MT CO2e in 2020. Of this amount, 71 % is considered biogenic
(from black liquor and biomass), whereas the remaining 29 % is fossil-
based emissions (i.e., natural gas). In comparison, the food sector ac-
counts for 6,868 MT CO2e emissions, with 76 % originating from natural
gas, 15 % from biomass, and 10 % from coal.

DOE [4] reports total on-site CO2e emissions for the food and
beverage sector at 45,000 MT CO2e, with 10,700 MT CO2e linked to
process heating and 9,600 MT CO2e linked to conventional boilers, both
of which can be relevant to drying. Consequently, drying accounts for
15 % of total CO2e emissions and 64 % of process heating emissions in
the food sector. Fig. 14 breaks down the CO2e emissions by subsectors
and key products for the food sector.

Similarly, the US Environmental Protection Agency estimates total
CO2e emissions for the P/P sector at 135,200 MT CO2e, with 55 % from
black liquor, 26 % from natural gas, and 19 % from biomass [152].
Based on our calculated CO2e emissions (33,995 MT CO2e), the impli-
cation is that 25 % can be attributed to thermal dryers. However, the
report covers only facilities emitting over 25,000 MT CO2e annually.

Fig. 15 highlights the 10 states with the highest CO2e emissions from
drying processes in the food and P/P sectors. In the food sector, emis-
sions are concentrated primarily in the Midwest because of substantial
grain drying activities, with additional contributions from blood meals
and dairy product drying. California also is a significant emitter, driven
by its large-scale fruit, vegetable, rice, and dairy productions. Florida

Fig. 9. US energy consumption for the drying process of (a) the food sector and (b) the P/P sector in 2020 for each subsector and each product in all 50 states.
(*Three food sector products are not included in the state-level analysis because of a lack of data: dry pet food, breakfast cereal, and dry pasta.).
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ranks high in emissions because of its substantial sugar production. This
analysis emphasizes regional CO2e emissions variability that is shaped
by specific drying processes and energy sources used in each state. Thus,
innovative and energy-efficient technologies are necessary to minimize

energy use for drying operations.
For the P/P sector, CO2e emissions directly correlate with the energy

consumption depicted in Fig. 9, reflecting the geographical concentra-
tion of mills. The figure also breaks down emissions by subsector,
highlighting the significant role of pulp mills in certain states. For
example, pulp mills in Florida and Washington contribute more CO2e
emissions than that of paper mills, primarily because those states have a
higher concentration of pulp production facilities.

Future projections for drying processes (2020–2050)

In a business-as-usual scenario—in which current drying technolo-
gies remain in use through 2050—energy consumption, CO2e emissions,
and energy costs have been projected to assess (1) their impact on US
energy demand and (2) potential implications for future innovative
dryers that could minimize energy use, costs, and associated emissions.
Based on the production and energy price trends detailed in Section 2 of
the SM, Fig. 16 and Fig. 18 depict the energy and economic results (bar
and line plots, respectively) for the food and P/P sectors from 2020 to
2050.

Food subsectors
In the food sector, the trends across most subsectors remain stable,

see Fig. 16, with the notable exception of soybeans, which are projected
to experience a 40 % increase in energy consumption. Drying-related

Fig. 12. US drying energy costs for the drying process of (a) the food sector and (b) the P/P sector in 2020 for each subsector and each product in all 50 states.
(*Three food sector products are not included in the state-level analysis because of a lack of data: dry pet food, breakfast cereal, and dry pasta.).
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energy costs are projected to increase by 19 % overall. A projected 10 %
decline takes place in the first decade, followed by a 27.7 % rise between
2030 and 2040 and then a 3.5 % increase in the final decade. These
projections are mainly due to the increase in natural gas prices over the
past two decades and demand for the products. Among food subsectors,
soybean processing experiences the highest cost increase at 34 %, fol-
lowed by the sugar subsector at 29% and the corn subsector at 18%. The
dairy subsector also sees a notable increase of 16 %, whereas the meat
and poultry slaughter subsectors experience a comparatively smaller
rise of 5 %.

A detailed breakdown of the food subsectors is provided in Fig. 17.
Soybean production emerges as a key driver of increased energy con-
sumption, with an average of 40 % higher consumption. The corn-
related subsector has a 16 % increase in energy consumption, with
gluten feed drying being the main contributor with a 58 % increase. In
the sugar industry, the growth is primarily attributed to beet sugar
dryers with a 25 % increase, whereas powdered dry milk is the main
contributor in the dairy sector, increasing by 31 %. Blood meal dryers
show negligible changes in energy use over time. In the fruits and veg-
etables drying subsector, potato dryers play a significant role, with an
increase of 14 % in energy consumption between 2020 and 2050.

Regarding energy costs, as previously indicated, the first decade sees
a decline, followed by a rise in costs over the last two decades for key
food sector products. In the soybean subsector, soybean flakes exhibit a
35 % cost increase. For the corn subsector, fiber and gluten feed drying

experience a 56 % rise. In the sugar subsector, beet sugar–related
products see a 29 % increase. The dairy subsector records a 16 % in-
crease for both major products, whereas blood meal drying rises by just
5 %. Conversely, the fruits and vegetables subsector show cost re-
ductions, with apple drying decreasing by 20 %, grape drying by 18 %,
other noncitrus drying by 11 %, and onion drying by 5 %. These declines
are largely driven by projected reductions in natural gas prices, partic-
ularly in California, where prices are expected to drop from $7.82/
MMBtu to an average of $4.57/MMBtu between 2030 and 2050 (see
Section 2 of the SM).

P/P subsectors
In the P/P sector, the drying energy consumption and cost are pro-

jected to increase by 30 % and 34 %, respectively (Fig. 18). Recycled
production is expected to grow steadily over the coming decades.
Recycled paperboard shows a 65 % increase in energy consumption and
a 61 % rise in energy costs, whereas recycled paper is projected to grow
by 52 % in energy use and 48 % in cost. In contrast, virgin paper and
paperboard production is expected to decline during the first decade. By
2030, virgin paperboard energy consumption and costs are projected to
decrease by 6 % and 20 %, respectively. Virgin paper shows similar
trends, with a 4 % drop in energy use and a 19 % reduction in cost.
Although pulp production sees a 6 % increase in energy consumption by
2030, energy costs are expected to fall by 13%, primarily owing to lower
natural gas prices. After 2030, energy consumption and costs are

Fig. 15. US CO2e emissions for the drying process of (a) the food sector and (b) the P/P sector in 2020 for each subsector and each product in all 50 states. (Note: F
and V = fruits and vegetables). (*Three food sector products are not included in the state-level analysis because of a lack of data: dry pet food, breakfast cereal, and
dry pasta.).
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projected to rise across all subsectors.

GHG emissions across all subsectors
Fig. 19 presents the projected GHG emissions for each subsector. In

the food sector, most subsectors maintain relatively stable emission
trends, except for soybeans, which are expected to rise by 40 %.
Conversely, in the P/P sector, all subsectors display a steady linear in-
crease of 28 %.

Discussion of future Perspective

The literature review and this work show that we can improve the
energy performance of drying systems in the following ways: (1)
reducing the evaporation load, (2) increasing dryer efficiency, and (3)
improving the energy supply (utility) systems. Each of these methods is
discussed in detail in the following subsections.

Efforts to enhance drying energy performance may yield additional
benefits for manufacturers, including reduced maintenance re-
quirements and improved operational safety. For example, optimizing

Fig. 17. Total on-site drying energy consumption and costs for the decades from 2020 to 2050 for each product of the subsectors of the food sector.
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airflow and heat distribution in dryers not only improves energy effi-
ciency but also ensures even drying, which reduces wear on equipment
components and minimizes maintenance needs. Additionally, main-
taining the correct air-to-fuel ratio avoids sub-stochiometric combustion
of fuel and reduces risks of generating unburned hydrocarbons in the
exhaust system, thereby improving a plant’s safety standards.

Reducing the evaporation load

To remain competitive, US manufacturers need to minimize energy
use per unit of product produced across the value chain. One approach
to achieving this is to minimize the SEC by reducing drying tempera-
tures, altering moisture content differentials, or improving drying effi-
ciency. However, altering drying temperatures may have significant
implications, including extended drying times [153], reduced product
quality [154], or increased dryer size requirements.

Because final product moisture content is typically regulated by in-
dustry standards, the only feasible way to alter moisture content dif-
ferentials is by reducing initial moisture levels. This can be achieved
through chemical or mechanical pretreatment methods, such as those
already employed in the P/P industry, or through the integration of
evaporators before the drying process takes place.

Increasing dryer efficiency

The 2024 DOE report identifies energy efficiency, electrification, and
low-carbon fuels as key strategies for optimizing energy use and costs in
food manufacturing [30]. Electrification is projected to play the largest
role (72 %) in reducing energy consumption, followed by low-carbon

fuels and feedstocks (17 %) and energy efficiency measures (9 %)
[30]. Significant energy-efficiency opportunities exist in recovering
waste heat from boilers—heat that can be repurposed through econo-
mizers to preheat inlet water or air, thereby improving overall system
efficiency. Additionally, advancements in controls and digitalization
offer potential for process optimization and enhanced monitoring,
enabling smarter and more efficient drying systems.

Opportunities for the food sector
As shown in Table 1 and according to some studies [155,156], most

drying temperatures in the food industry are below 200 ◦C, a range
suitable for implementing innovative drying technologies and making
industrial drying competitive. Technologies such as microwave,
microwave-vacuum, infrared, ohmic, and radiofrequency drying not
only achieve energy savings of up to 83 % but also reduce processing
times by as much as 97 % [157]. Microwave and hybrid methods have
also shown improved retention of bioactive compounds and physico-
chemical properties in food products like garlic while still maintaining
commercial feasibility [158]. Similarly, osmosonication has been found
to enhance nutritional retention, reduce drying time, and improve mass
transfer rates in various fruits and vegetables [159]. However, the most
widely applicable technologies for this temperature range are heat
pumps [157,160–162] and electric boilers [163,164].

Numerous studies have explored the potential effect of electrification
on energy consumption and CO2e emissions in the US food sector. For
example, Hasanbeigi et al. [165] analyzed electrification in subsectors
like beet sugar, milk powder, wet corn milling, and crude soybean oil
production, with the following information among the study’s findings.
For milk powder, modifying conventional dryers with heat pumps or

Fig. 17. (continued).
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electric air heaters could reduce energy demand by approximately 57 %.
In the wet corn milling sector, replacing existing dryers with electric
drying technologies could lower energy use from 690 kWh/ US ton to
665 kWh/US ton. Specific recommendations of the Hasanbeigi et al.
study include using an electrical fluidized bed dryer for germ dewatering
and using electrical rotary dryers for gluten meals, starch, and gluten
feed drying. Broader analyses from other studies of the food sector show
its energy use could decrease significantly through electrification,
decarbonization, and reduced processing intensity [6,166]. These sys-
temic studies also highlight long-term opportunities for renewable
integration, hybrid heat systems, and behavioral shifts to achieve net-
zero industrial goals.

Opportunities for the P/P sector
In the P/P sector, energy efficiency improvements play a crucial role

in optimizing fuel use and reducing costs. Currently, 19 % of projected
energy reductions in the sector are expected to come from efficiency
measures, with additional contributions from low-carbon fuels and
feedstocks (45 %) and electrification (25 %) [30]. Enhancing the effi-
ciency of drying and steam systems can help ensure that available
biomass and black liquor resources are used more effectively, mini-
mizing the need for additional natural gas. For example, membrane
concentration processes can reduce steam consumption by

approximately 30 % [30]. Improving heat recovery and process opti-
mization can further support cost-effective energy management in P/P
production. Complementary studies have investigated the use of waste
heat in maritime transport for drying wood products using vacuum
drying, supporting more flexible industrial drying options [167].

Advanced process control and energy efficiency strategies can
further optimize drying processes. Machine learning algorithms have
been applied to improve process efficiency, reducing steam use by 1.5 %
[168]. Additional modeling-based analyses using artificial intelligence
tools like ANFIS and ANN for exergy prediction in batch drying systems
have shown improvements in energy performance [169]. Equipment
upgrades (e.g., replacing outdated motors, boilers, and dryers or incor-
porating variable speed drives and waste heat recovery systems) can
significantly enhance energy efficiency [170]. For instance, two studies
demonstrated energy reductions of 15 % [171] and 16 % [172], with
corresponding emission cuts of 12 %–13 %. Emerging technologies like
supercritical CO2 power systems also show promise by using relatively
lower waste heat temperatures, achieving energy savings of 20 % and
emission reductions of 45 % [7,173].

Electrification of drying processes in the P/P sector offers a trans-
formative pathway for reducing energy consumption. Conventional
boilers can be replaced with electric boilers or heat pumps [174], and
infrared and microwave technologies can be integrated into

Fig. 19. Total CO2e emissions of drying for the decades from 2020 to 2050 for each subsector of the (a) food and (b) P/P sectors.
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conventional dryers or used in finishing operations [5]. Electrification
not only reduces emissions but also enhances efficiency. For example,
conventional dryers often result in uneven drying, leading to overdried
regions or subregions in the charged material while both increasing
energy consumption and degrading paper quality. In contrast, micro-
wave drying targets wet spots, ensuring a more uniform moisture dis-
tribution that can yield energy savings of 7 %–21 % and boost
production by 31 % [175]. Similarly, superheated steam drying can
reduce energy usage by 25 % by replacing air with superheated steam as
the heat carrier, enabling full heat recovery and minimizing energy
losses from evaporated water in paper drying [176].

Improving energy supply systems

The renewable energy potential and infrastructure in the US provide
opportunities to align drying processes with local resources. The Na-
tional Renewable Energy Laboratory reported databases for national
solar radiation [177], geothermal resources [178], annual average wind
speed at 100 m above surface level [179], and solid biomass resources
[180]. The southwest region boasts the highest solar radiation levels,
enabling food sector facilities in California and Florida to leverage solar
energy for processes like sugar production. Geothermal resources,
prevalent in states like Washington and Louisiana, could benefit the P/P
industry. The Midwest’s significant wind energy potential can support
facility energy needs or utility-scale integration. Biomass resources also
align closely with the food and P/P industries, as highlighted in Section
2.2.3. These sectors are among the largest producers of biomass, which
can be used as fuel for various technologies.

Recent studies further illustrate the technical potential of solar and
biomass-based drying systems [181–183]. Solar dryers with phase
change materials have shown improvements in energy efficiency, tem-
perature stability, and drying uniformity [184,185]. Incorporating
temperature control systems in indirect solar dryers enhances product
quality and collector durability under varying climatic conditions [186].
Advanced collector designs, such as double-pass V-groove systems, have
achieved thermal efficiencies up to 88.8 % with promising tech-
noeconomic returns [187]. Biomass-fueled dryers, such as rice husk-
fired systems, demonstrated competitive drying rates, acceptable prod-
uct quality, and payback periods under 1.5 years [188]. Similarly,
multipurpose dryers using biowaste heat sources and validated through
computational fluid dynamics modeling showed efficiencies exceeding
89 % for paddy rice drying [189]. These technologies highlight the
potential for integrating natural resource-based solutions into future
decarbonization strategies for industrial drying.

Barriers and solutions

Various strategies can be adopted to address technical, knowledge,
and cost-related obstacles. Table 4 presents the three main categories of
challenges associated with implementing these measures and offers
potential solutions for mitigation.

Conclusion

This study provides a comprehensive assessment of drying processes
in the US food and P/P sectors, with evaluations of their energy con-
sumption, energy costs, CO2e emissions, and future projections from
2020 to 2050. This is the first study of its type to conduct such an
assessment at the state and national level.

Energy and environmental models were developed and validated
with the existing literature, providing a comprehensive dataset on dry-
ing parameters for the US food and P/P sectors. This dataset presents
typical drying conditions for various products and can serve as a valu-
able resource for industry, academia, and policymakers. The following
are highlights of the main conclusions in this study:

Table 4
Barriers and solutions for enhancing energy efficiency in drying processes in the
food and P/P sectors.

Barrier Type Key Barriers Solutions

Technology/
Technical

• Low coefficient of
performance of high-
temperature heat pumps

• Increase R&D investment in
efficiency, cost-effectiveness,
and quality

• Efficiency loss in
hydrogen-natural gas
blends above 20 %
hydrogen

• Focus R&D on integrated
systems (renewables, waste
heat recovery)

• Biomass boiler efficiency
issues (impurities,
heterogeneity, moisture
content)

• Improve collaboration among
government, universities,
industries, and nonprofits

• Compliance, product
standards, and quality
concerns with new
technologies

• Promote partnerships and
knowledge-sharing to align
innovations with industry
needs

• Limited R&D in small and
medium-sized enterprises;
large firms focus on prod-
ucts rather than process
innovation

• Boost DOE funding for
industrial-scale technology
validation

• Grid reliability risks from
widespread electrification

• Engage in international R&D
and demonstration for faster
commercialization

• US electricity generation
remains carbon-intensive

• Engage and communicate
with industry to identify their
real technology needs

Knowledge and
Education

• Low awareness and
understanding of
advanced technologies

• Expand government and
utility programs to educate
stakeholders (e.g., Better
Plants Program, Industrial
Assessment Centers)

• Lack of sufficient
information for industrial
consumers

• Strengthen academic
involvement in training and
workforce development

• Dependence on costly
third-party providers
because of inadequate
training

• Encourage cross-sector
knowledge exchange for
technology adoption

• Lack of awareness of the
cost of doing nothing;
help needed to quantify
energy and nonenergy
benefits

• Highlight public health,
economic, and
competitiveness benefits

Cost • High up-front investment,
infrastructure upgrades,
and facility modifications

• Encourage stakeholder
collaboration to reduce costs

• Higher electricity costs
compared with those of
natural gas

• Integrate new technologies
with existing systems to
minimize disruption

• Long lifespan of existing
dryers (30–60 years),
making replacement slow

• Provide utility incentives
(discounted electricity rates,
energy storage solutions)

• Supply chain constraints
for transformers and key
electrification
components

• Implement flexible energy
management (load shifting,
storage integration)

• Rising demand for
biomass and hydrogen
may increase costs and
limit availability

• Expand financial support (tax
breaks, grants, low-interest
loans)

​ • Introduce sectoral CO2

emissions policies and carbon
pricing mechanisms

​ • Offer targeted state and local
incentives for renewables and
carbon capture

​ • Expand renewable portfolio
standards to mandate
renewable energy integration
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• The study identifies the SEC ranges for key products and compares
them with existing literature.

• Total energy consumption for drying processes in the US is estimated
at 442 TBtu for the P/P sector and 112.1 TBtu for the food sector.

• Drying accounts for 21.7 % and 10 % of total energy use in the P/P
and food sectors, respectively.

• In the P/P industry, paperboard dominates energy consumption (57
%), followed by paper (32 %) and market pulp (12 %).

• For the food sector, the most energy-intensive subsector is soybean
processing (42 %), followed by corn processing (21 %), fruits and
vegetables (12%), dry pet food (10%), sugar production (8 %), dairy
(5 %), rice (4 %), breakfast cereal (3 %), dry pasta (2 %), and animal
slaughter (2 %).

• At the state level, the largest energy consumers are as follows:
o P/P sector—Georgia (11.9 %), Alabama (9.9 %), Wisconsin (6.6
%), Florida (6.1 %), and Louisiana (6.0 %)

o Food sector—Illinois (10.4 %), Iowa (10.3 %), California (6.2 %),
and Minnesota (6.1

• The current drying energy cost for thermal drying is estimated to be
$919 M in the P/P sector and $417 M in the food sector.

• State energy prices significantly affect the economic analysis. Cali-
fornia and Iowa (both 11.1 %), along with Illinois (10.6 %), account
for the highest share of total drying energy costs in the food sector.

• At the state level, Georgia leads in drying energy costs for the P/P
sector with 9.4 % of the total, followed by Pennsylvania (8.4 %),
Alabama (7.5 %), Florida (6.8 %), and Wisconsin (6.3 %).

• The CO2e emissions from drying processes account for 25 % of the
total P/P sector emissions, which are estimated at 33,995 MT CO2e
per year, with 71 % classified as biogenic emissions.

• In the food sector, drying contributes 15 % of total emissions,
reaching 6,868 MT CO2e, 75.6 % of which originates from natural
gas.

• Emissions patterns align with energy use, with the Southern US being
the primary emitter in the P/P sector, whereas the Midwest region
dominates food sector emissions. Notably, grain processing (corn and
soybeans) is concentrated in the Midwest; sugar production is
heaviest in Florida and Louisiana; and dairy, fruit, and vegetable
drying are most prominent in California.

• The projected energy costs for drying processes in the P/P and food
sectors are expected to increase by 34 % and 19 % by 2050,
respectively.

• National projections indicate a rise in both energy consumption and
CO2e emissions from 2020 to 2050 for the P/P sector, increasing by
30% and 20%, respectively. In the food sector, soybean processing is
expected to drive a 40 % increase in drying-related energy use and
emissions.

Several strategies to improve drying efficiency have been outlined,
along with associated barriers and potential solutions. Implementing
energy-efficiency measures is critical for reducing costs, energy con-
sumption, and emissions, all of which are important for strengthening
industrial competitiveness. Energy-efficient technologies often provide
the best cost-benefit approach. Additionally, low-carbon fuels and
feedstocks will play a vital role in reducing reliance on conventional
fossil fuels. Electrification, particularly through heat pumps, presents a
promising opportunity for the food sector, where drying temperatures
are typically below 200 ◦C. Hybrid renewable energy systems can also be
integrated with existing technologies to further lower operational costs
and emissions. Addressing technical, knowledge, and cost barriers will
be essential for accelerating the adoption of these solutions, ensuring a
more sustainable and efficient future for drying processes in both
industries.
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[145] Konopka A, Barański J, Orłowski KA, Mikielewicz D, Dzurenda L. Mathematical
model of the energy consumption calculation during the pine sawn wood (Pinus
sylvestris L.) drying process. Wood Sci Technol 2021;55:741–55. https://doi.org/
10.1007/s00226-021-01276-8.

[146] Berg W, Salamat R, Scaar H, Mellmann J. Investigation of nitrogen loss during
laboratory scale fixed-bed drying of digestate. Waste Manag 2021;129:26–34.
https://doi.org/10.1016/j.wasman.2021.05.003.

[147] K.J. Kramer, E. Masanet, T. Xu, E. Worrell, 2009, Energy Efficiency Improvement
and Cost Saving Opportunities for the Pulp and Paper Industry, Environmental
Energy Technologies Division, https://www.energystar.gov/sites/default/files
/buildings/tools/Pulp_and_Paper_Energy_Guide.pdf.

[148] M. Rahnama Mobarakeh, M. Santos Silva, T. Kienberger, Pulp and Paper Industry:
Decarbonisation Technology Assessment to Reach CO2 Neutral Emissions—An
Austrian Case Study, in: Energies, Vol. 14, 2021.

[149] US Department of Agriculture, 2023, Noncitrus Fruits and Nuts 2022 Summary,
US Department of Agriculture, https://downloads.usda.library.cornell.edu/us
da-esmis/files/zs25x846c/zk51wx21m/k356bk214/ncit0523.pdf.

[150] World Population Review, 2023, Onion Production 2022, 2025, World Population
Review. Access Date: 02/03/2025, https://worldpopulationreview.com/state-ran
kings/onion-production-by-state.

[151] World Population Review, 2024, Apple Production 2023, 2025, World Population
Review. Access Date: 02/03/2025, https://worldpopulationreview.com/state-ran
kings/apple-production-by-state.

[152] US Environmental Protection Agency, 2023, 2011-2021 Greenhouse Gas
Reporting Program Sector Profile: Pulp and Paper, 2025, US Environmental
Protection Agency. Access Date: 03/01/2025, https://www.epa.gov/system/file
s/documents/2023-05/Pulp_and_Paper_Profile_RY2021_05-04-2023%20508.pdf.

[153] Navarrete Cereijo G, Curto-Risso P, Bizzo WA. Simplified model and simulation of
biomass particle suspension combustion in one-dimensional flow applied to
bagasse boilers. Biomass Bioenergy 2017;99:38–48. https://doi.org/10.1016/j.
biombioe.2017.01.030.
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