
US Department of Energy Better Plants Program Energy Treasure Hunt Exchange Toolkit

Approved for public release. Distribution is unlimited.

Wei Guo Thomas Wenning Kiran Thirumaran Sachin Nimbalkar Eli Levine

January 2019

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports @ osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Energy and Transportation Science Division

US Department of Energy Better Plants Program Energy Treasure Hunt Exchange Toolkit

Wei Guo (Oak Ridge National Laboratory)
Thomas Wenning (Oak Ridge National Laboratory)
Kiran Thirumaran (Oak Ridge National Laboratory)
Sachin Nimbalkar (Oak Ridge National Laboratory)
Eli Levine (US Department of Energy)

Date Published: January 2019

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

CO ₁	NTENTS	iii
LIS	T OF FIGURES	v
AC	KNOWLEDGMENTS	vii
AB	STRACT	
1.	INTRODUCTION	
2.	ENERGY TREASURE HUNT EXCHANGE TOOLKIT OVERVIEW	2
	2.1 PHASE 1—ENERGY TREASURE HUNT PREPARATION TOOL LIST	2
	2.2 PHASE 2—ENERGY TREASURE HUNT EVENT TOOL LIST	2
	2.3 PHASE 3—ENERGY TREASURE HUNT FOLLOW-UP TOOL LIST	3
3.	TOOLS FOR PHASE 1—ENERGY TREASURE HUNT PREPARATION	3
4.	TOOLS FOR PHASE 2—ENERGY TREASURE HUNT EVENT	
	4.1 HANDOUTS	
	4.2 OPPORTUNITY SHEETS	6
	4.3 ENERGY TREASURE HUNT CALCULATORS	7
	4.4 SUMMARY REPORT GENERATOR	
5.	TOOLS FOR PHASE 3—TREASURE HUNT FOLLOW UP	9
6.	SUMMARY	9
7.	BIBLIOGRAPHY	9
API	PENDIX A. SAVE THE DATE TEMPLATE	A-2
	PENDIX B. AGENDA TEMPLATE	
	PENDIX C. PRETRAINING DATA COLLECTION SHEETS	
API	PENDIX D. ENERGY TREASURE HUNT OPENING PRESENTATION TEMPLATE	A-8
API	PENDIX E. CHECKLISTS	A-16
API	PENDIX F. DATA COLLECTION SHEETS	A-28
API	PENDIX G. CHEAT SHEETS	A-32
	PENDIX H. INFO CARDS	
API	PENDIX I. OPPORTUNITY SHEETS	A-54
API	PENDIX J. CALCULATORS	A-56
API	PENDIX K. SUMMARY REPORT	A-66
	PENDIX L. PROJECT IMPLEMENTATION TRACKER	
	PENDIX M. ENERGY TREASURE HUNT PARTICIPATION CERTIFICATE TEMPLATE.	
API	PENDIX N. TREASURE HUNT EVALUATION FORM TEMPLATE	A-72

LIST OF FIGURES

Figure 1. Three phases of energy treasure hunts.	. 2
Figure 2. Checklist for chilled water systems.	
Figure 3. Cheat sheet for compressed air systems.	
Figure 4. Info card for compressed air systems.	
Figure 5. MEASUR tool suite home screen.	
Figure 6. MEASUR tool suite calculator collection screen.	

ACKNOWLEDGMENTS

The authors thank Jennifer Travis and Kristina Armstrong of Oak Ridge National Laboratory and Bruce Lung of Oak Ridge Associated Universities who assisted in the development and review of this report.

ABSTRACT

The US Department of Energy's (DOE's) Better Buildings, Better Plants Program works with manufacturing companies to improve their facilities' energy efficiency. By partnering with the program, companies commit to long-term energy efficiency goals, typically 25% energy savings in 10 years. The program provides technical support to help partners obtain their goals and recognizes partners' outstanding achievements. One of the technical support offerings from the program is the Energy Treasure Hunt Exchange In-Plant Training. The Treasure Hunt Exchange is an adaptation of the Kaizen methodology for energy efficiency originally developed by Toyota. DOE developed the Energy Treasure Hunt Exchange Toolkit to facilitate program partners' execution of the energy treasure hunt processes. The toolkit covers three phases of an energy treasure hunt for all major energy systems: pump systems, fan systems, process heating systems, process cooling systems, steam systems, compressed air systems, lighting systems, and motor systems. All the tools included in the toolkit can be downloaded from the DOE website. The purpose of this report is to provide Better Plants partners an overview of the toolkit and detailed descriptions of its capabilities.

1. INTRODUCTION

The US Department of Energy's (DOE's) Better Buildings, Better Plants (Better Plants) Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy-intensive industrial companies and organizations. As of January 2019, 205 manufacturing companies and public water and wastewater treatment plants are partnering with DOE through the Better Plants Program to improve the energy efficiency of their facilities.

By partnering with Better Plants, partners pledge long-term ambitious energy savings goals, typically 25% over 10 years. These partners receive national recognition for their achievements, technical support from technical account managers, access to in-plant training (InPLT) and other energy savings resources, and networking opportunities.

InPLTs are two- to four-day events led by experts in energy-intensive manufacturing processes and systems. The experts train facility staff on how to establish energy management systems, conduct plant energy assessments, use DOE tools and resources, and implement cost-effective projects. Better Plants partners can apply to host training or just participate in the training events. Better Plants currently offers InPLTs in several topics: pump systems, fan systems, process heating systems, steam systems, compressed air systems, industrial refrigeration systems, water and wastewater treatment processes, the 50001 Ready Program, and energy treasure hunts.

The energy treasure hunt InPLTs can take two different forms: (1) a full "exchange" in which two partners each send their energy team to the other's facility to conduct energy treasure hunts or (2) a more traditional energy treasure hunt in which only staff from the host facility attend. To promote best practices, knowledge sharing, and networking, the Better Plants program encourages the full exchange format.

DOE developed the Energy Treasure Hunt Exchange Toolkit to facilitate planning treasure hunt events, executing the energy treasure hunt, identifying energy conservation opportunities, performing savings estimations, and tracking the results. This report provides Better Plants partners an overview of the toolkit and detailed descriptions of its capabilities.

2. ENERGY TREASURE HUNT EXCHANGE TOOLKIT OVERVIEW

The three phases of the treasure hunt process and the associated tools and documents are shown in Figure 1 and the following subsections. The materials can be downloaded from https://betterbuildingsinitiative.energy.gov/energy-treasure-hunt-exchange-toolkit. PDF versions of the documents and screen captures of the tools are included as appendixes.

Figure 1. Three phases of energy treasure hunts.

2.1 PHASE 1—ENERGY TREASURE HUNT PREPARATION TOOL LIST

- Save the Date template (MS Office Word file)
- Agenda template (MS Office Word file)
- Pretraining Data Collection Form (MS Office Excel file)
- Plant Energy Profiler Excel (PEPEx) Tool (MS Office Excel file)
- Plant Water Profiler (PWP) Tool (MS Office Excel File)

2.2 PHASE 2—ENERGY TREASURE HUNT EVENT TOOL LIST

- Kickoff Presentation template (MS Office PowerPoint file)
- Handouts
 - Check Lists (PDF file)
 - Data Collection Sheets (MS Office Excel file)
 - Cheat Sheets (PDF file)
 - Info Cards (PDF file)
- Calculators
 - Electricity Savings Calculator (MS Office Excel file)
 - Natural Gas Savings Calculator (MS Office Excel file)
 - Steam Savings Calculator (MS Office Excel file)
 - Water Savings Calculator (MS Office Excel file)
- Opportunity Sheets (MS Office Excel file)
- Summary Report Generator (MS Office Excel file)

2.3 PHASE 3—ENERGY TREASURE HUNT FOLLOW-UP TOOL LIST

- Participation Certificate template (MS Office PowerPoint file)
- In-plant Training Evaluation Form template (MS Office Word file)
- Project Implementation Tracker (MS Office Word file)

3. TOOLS FOR PHASE 1—ENERGY TREASURE HUNT PREPARATION

Proper planning helps the facilitator set up more effective teams, identify and target high potential operations, and avoid surprises on the day of the event. The toolkit provides two templates to aid in planning the event and in informing participants about the event: the Save the Date Announcement (see Appendix A) and the Agenda (see Appendix B).

Gathering relevant information and analyzing the data before the event is a crucial part of planning that provides a better understanding of the facility and its operations before the event begins and reduces the time spent gathering data during the event. The toolkit provides the Pretraining Data Collection Form (see Appendix C) for this purpose, which provides a structured approach to collecting relevant information without missing out on required data.

Depending on the level of time and effort the facilitator is looking to put into the preparation, the toolkit provides two data collection and analyzing options. The "Essential data" section of the form contains items crucial to running the event, such as the energy sources used, operating shifts, annual energy consumption, and utility costs. The "Helpful data" section contains information that is useful to planning a more effective event. This focuses on information about the process equipment, including specifications, efficiency, and operating hours.

For a more detailed analysis, the user can use the PEPEx, which helps identify how energy is being consumed at a plant and shows the potential for improvement in each system. Similarly, the PWP Tool helps illustrate the water flows in a plant, calculates the "true cost of water" of the facility (such as the costs associated with water procurement, treatment, and consumption and wastewater disposal), and helps identify areas for improvement in each system.

4. TOOLS FOR PHASE 2—ENERGY TREASURE HUNT EVENT

During the treasure hunt event, the participating teams investigate specific systems to identify possible energy savings opportunities, quantify the savings, and summarize the results. The tools for phase 2 help the participants and the facilitator at each step of this process. The toolkit includes a template for the kickoff presentation for the first day of the event (see Appendix D). The facilitator can use this to introduce participants to the treasure hunt process and provide an overview of the facility and its systems.

4.1 HANDOUTS

The handouts provide guidance to help participants identify opportunities and collect the relevant data to quantify savings. Although the handouts provide the necessary information for anyone to start identifying opportunities and gathering data, they are designed to be used as guides only to help the participants get started and are not meant to be all-encompassing checklists. The toolkit contains four different types of handouts for each system type: **checklists**, **data collection sheets**, **cheat sheets**, **and info cards**.

The **checklists** breakdown the system and the various components to be assessed by the treasure hunt participants, along with the typical parameters required to identify opportunities. They also outline the most common low-cost/no-cost opportunities associated with the system and provide a sketch of the system. Figure 2 is an example checklist, and the rest can be found in Appendix E. Checklists have been created for seven systems:

- Chilled water systems
- Compressed air systems
- Lighting systems
- Process equipment
- Process heating systems
- Pump and fan systems
- Steam systems

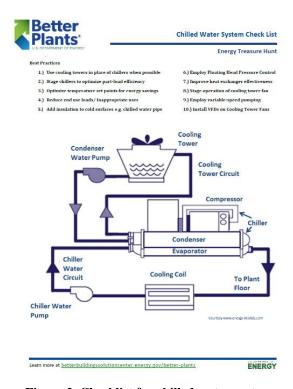


Figure 2. Checklist for chilled water systems.

The **data collection sheets** list the minimum amount of information that must be measured to quantify the savings associated with the most common opportunities identified in treasure hunt events. In addition, these sheets provide tips on where and how to collect the required data. The data collection sheets can be found in Appendix F and have been created for five systems:

- Lighting systems
- Pump and fan systems
- Compressed air systems
- Steam systems
- Chilled water systems

The system-specific **cheat sheets** are repositories of system charts, default tables, rules of thumb, and more. The sheets serve multiple purposes: help participants better understand the system's operation; help

participants perform back-of-the-envelope estimates of energy savings; and provide quick references to check the feasibility of some opportunities. The cheat sheets can be found in Appendix G, and Figure 3 provides an example. There are six system-specific cheat sheets:

- Lighting systems
- Pump and fan systems
- Process heating systems
- Process cooling systems
- Compressed air systems
- Steam systems

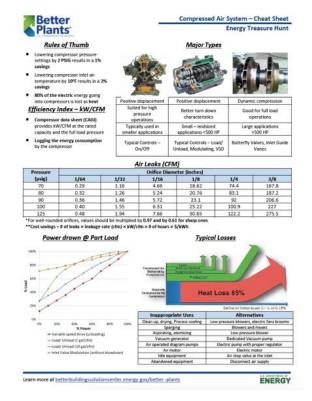


Figure 3. Cheat sheet for compressed air systems.

The **info cards** include top energy conservation measures, frequently used formulas, common rules of thumb, unit conversions, and reference tables for major energy systems. The cards are very handy for quick references (see Figure 4) and can be found in Appendix H. Info cards are available for eight systems:

- Pump systems
- Fan systems
- Process heating systems
- Process cooling systems
- Compressed air systems
- Steam systems
- Motor systems
- Water systems

Figure 4. Info card for compressed air systems.

4.2 OPPORTUNITY SHEETS

The toolkit also provides an **opportunity sheet** template to help properly document the identified energy savings opportunity and prevent information loss between project identification and implementation. Opportunity sheets streamline the information transfer by providing a standard format to capture and

summarize the specifics of a potential energy saving measure. Each opportunity identified during an energy treasure hunt exchange gets its own opportunity sheet. Appendix I shows a screenshot of the opportunity sheet template.

4.3 ENERGY TREASURE HUNT CALCULATORS

The toolkit contains nine calculators to help participants quantify the energy savings from opportunities or best practice implementation identified during the Energy Treasure Hunt Exchanges. Each energy or utility type (including water) has its respective "Treasure Hunt Calculator"; Appendix J provides several screenshots of each calculator. The treasure hunt calculators can help estimate the savings associated with typical treasure hunt opportunities such as scheduling or turning equipment on or off, reducing the load on the equipment. Calculators are also available to help quantify results for very specific opportunities (reducing compressed air leaks, reducing compressor pressure, and insulation and lighting improvements).

The results from the calculators provide the information needed to populate the opportunity sheets. Using the calculators is optional and can be bypassed when energy savings are estimated using other calculators or methods more familiar to the user.

Although not included in the toolkit download, DOE is currently developing the MEASUR tool suite as a "one stop shop" for energy savings calculations. This software is open source and cross-platform compatible, and the algorithms were developed by systems experts and are technology and vendor agnostic. When complete, MEASUR will include updated versions of the programs formerly known as the Pumping System Assessment Tool (PSAT), Process Heating Assessment and Survey Tool (PHAST), Fan System Assessment Tool (FSAT), Steam System Modeler Tool (SSMT), and AIRMaster+. MEASUR is available for download with several of the systems available for assessments. Figure 5 shows a screenshot of the home screen. The energy treasure hunt calculators discussed previously will also be incorporated into MEASUR, complementing the more than 40 calculators already included, some of which can be seen in Figure 6.

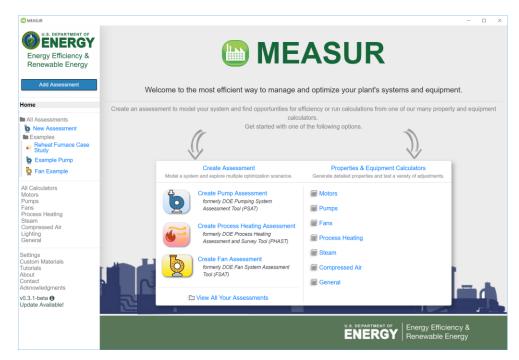


Figure 5. MEASUR tool suite home screen.

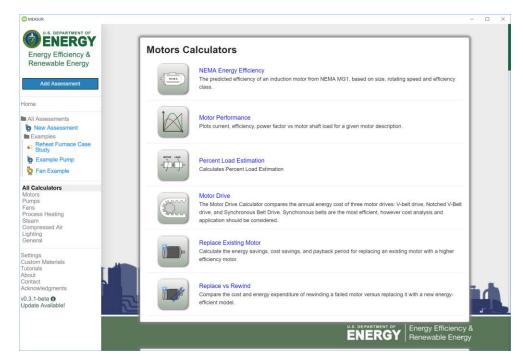


Figure 6. MEASUR tool suite calculator collection screen.

4.4 SUMMARY REPORT GENERATOR

After identification and quantitative analysis of individual opportunities, the results are rolled up and summarized to create a report for presentation to management. This is made easier with use of the

summary report generator (shown in Appendix K), which automatically rolls up the individual opportunity sheets and creates appropriate summary tables and charts.

5. TOOLS FOR PHASE 3—TREASURE HUNT FOLLOW UP

The energy treasure hunt exchange follow-up involves prioritizing the identified energy savings opportunities and determining the next steps for project implementation. The Project Implementation Tracker helps with this task and is used to check the status of energy projects against the implementation schedule and to monitor project results. Screenshots of the tracker can be found in Appendix L. The follow-up phase also includes templates for Participation Certificates (see Appendix M) and an Evaluation Form (shown in Appendix N) for use in postevent activities.

6. SUMMARY

The Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy-intensive industrial companies and organizations. The program provides technical support, national recognition, and networking opportunities. One of the technical support offerings is Energy Treasure Hunt Exchange In-plant Training. DOE developed the Energy Treasure Hunt Exchange Toolkit to assist partners in energy treasure hunt processes.

7. BIBLIOGRAPHY

- Lean Manufacturing Tools. Planning and Running Kaizen Events. http://leanmanufacturingtools.org/625/planning-and-running-kaizen-events/.
- Nimbalkar, S., W. Brockway, B. Lung, K. Thirumaran, and T. Wenning. 2017. *U.S. DOE's Energy Treasure Hunt Exchange In-Plant Trainings DOE Resources, Early Results and Lessons Learned*. Paper presented at the 2017 39th Industrial Energy Technology Conference (IETC), New Orleans, LA.
- Toyota Motor Corporation. 1998. *The Toyota Production System Leaner Manufacturing for a Greener Planet*. Toyota Motor Corporation, Public Affairs Division, Tokyo.
- US Department of Energy. Better Buildings, Better Plants Program and Challenge. https://betterbuildingssolutioncenter.energy.gov/better-plants.
- US Department of Energy. Plant Energy Profiler Excel, or PEPEx https://energy.gov/eere/amo/downloads/plant-energy-profiler-excel.
- US Department of Energy. Plant Water Profiler Tool. https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-beta-version-pwpex-v01.
- US Department of Energy. MEASUR tool suite. https://www.energy.gov/eere/amo/measur.
- US Environmental Protection Agency. Energy Treasure Hunt Guide: Simple Steps to Finding Energy Savings https://www.energystar.gov/sites/default/files/buildings/tools/Energy_Treasure_Hunt_Guide_Jan2014.pdf.

APPENDIX A. SAVE THE DATE TEMPLATE

SAVE THE DATE

US DOE's In-Plant Training Energy Treasure Hunt Exchange

Company Name Facility Address

May 1 to 3, 201X

ABC limited, ORNL, and U.S. DOE's Advanced Manufacturing Office are organizing an Energy Treasure Hunt Exchange to identify day-to-day operational energy efficiency improvements in the manufacturing process and associated systems. The in-plant training will prepare plant personnel with hands-on experience on how am Energy treasure hunt is run in addition to identifying and, evaluating energy efficiency projects. Participants will be provided with practical information to identify energy saving projects and the necessary tools to quantify the associated savings. The focus will be on identifying low cost operational opportunities for energy optimization and documenting them.

Participants will learn:

- The value/benefits of a treasure hunt exchange
- What to look for in an energy treasure hunt and how to profile equipment energy use
- How to identify equipment and process opportunities
- Methods for collecting energy data and common data collection tools
- How to effectively present outcomes of the Treasure Hunt Exchange
- How to understand calculation tools and ROI methodologies
- · What are relevant diagnostic tools and how to use them
- Use of Tools to calculate energy savings from identified opportunities
- How to select processes, plants, departments for treasure hunts
- The importance of Team makeup processes and people
- · Prioritizing energy-saving opportunities
- Replication across facilities, departments, business units
- Preparation of treasure hunt outcome for management presentation

Additionally:

 At least one employee will learn how to be a facilitator to conduct internal treasure hunts The training will focus on four fundamental elements that every treasure hunt exchange needs to have in order to be effective. These four elements are:

- 1. A profile of the equipment/systems to be analyzed and an equipment checklist
- 2. Data collection protocols and tools
- 3. Calculators and calculation methodologies (baselines & ROI metrics)
- 4. Relevant energy diagnostic equipment and how to use them

Contacts

- Designation, Name , company.com
- Designation, Name , facilitator@company.com

Get to Know the Presenters: Brief Bio Sketches

Presenter 1: Short bio

Presenter 2 : Short bio

APPENDIX B. AGENDA TEMPLATE

Energy Treasure Hunt Exchange

Dates: Sunday, May XX, 201X - Tuesday, May XX, 201X

Partner Site: Your Name, TN facility - 1 ABC Drive. Tonawanda, TN 37919

ABC limited, ORNL, and U.S. DOE's Advanced Manufacturing Office is organizing an Energy Treasure Hunt Exchange to identify day-to-day operational energy efficiency improvements in the manufacturing process and associated systems. The event will be led by Presenter 1 at the ABC Ltd. plant is located in Tonawanda, Tennessee. The plant manufactures original equipment and replacement parts for the consumer and commercial markets. In addition to identifying projects for the host facility, the event will equip the participants with the knowledge and tools required to take the treasure hunt concept and apply it in their other facilities.

Pre-Training Webinar	In preparation for the INPLT, join us for a pre-training webinar on treasure hunt exchanges.
April XX, 2017 at 9:30 AM ET	More Info and to Register - https://attendee.gotowebinar.com/register/878154244193730XXX

	10:00 AM - 12:00 PM	12PM to 1P	1:00 PM - 5:30 PM
Day 1 Sunday X/XX/2017 (Observing the idle facility)	Safety / Plant Orientation Opening Remarks Kick off Objectives and Overview of the Treasure Hunt Exchange Assign teams and leaders	Lunch	Gather into Teams Tour the facility and look for opportunity Discuss initial findings/ideas Plan for Monday morning

	8:00 AM - 12:00 PM	12PM to 1P	1:00 PM - 5:30 PM
Day 2 Monday X/XX/2017 (Observing the operating	Welcome from Management Layout plan for the day Detail Sheet Training Observe facility and operations	Lunch	Begin detail sheets Additional data collection in the facility Identify top ideas

	8:00 AM - 12:00 PM	12PM to 1P	1:00 PM - 4:00 PM
Day 3 Tuesday XX/XX/2017	Recap top ideas Wrap up details sheets and field observations Roll up data sheets	Lunch	Dry run management presentation Present to management

Get to Know the Presenters: Brief Bio Sketches

Mr. Presenter 1: Short bio

Mr. Presenter 2 : Short bio

PPE Requirements

Use this section to instruct participants on sign-in procedure, photo ID requirements, policy on electronics, PPE requirements, parking etc.

APPENDIX C. PRETRAINING DATA COLLECTION SHEETS

Energy Treasure Hunt In-Plant Training Advanced Information Request

This document is requested to be completed at least 2 weeks prior to the energy treasure hunt

The document is broken down into three section (three tabs of the excel workbook)

- 1.) Essential Data All fields listed in this sheet are key to running a successful treasure hunt and is to be filled by the user.
- 2.) Helpful Data The fields listed in this session are helpful to have in advance and make it easier to effectively plan for the treasure hunt event. It is recommended that the user goes through the various sections in this sheet and complete it based on information readily available.

The Plant Energy Profiler Excel (PEPEx) is recommend for users who would like to provide the treasure hunt facilitator with more information about the facility. In addition to providing the facilitator with the knowledge required to tailor the treasure hunt event, the PEPEx will also help the user better understand the energy usage and the existing connection the facility.

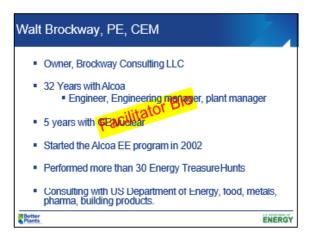
It takes a user with an understanding of the various systems in the plant an average of 20 minutes to complete the tool. Interested users are encouraged to seek the help of the facilitator to complete PEPEx document. PEPEx is included in the Treasure Hunt Toolkit and can also be downloaded from the DOE website.

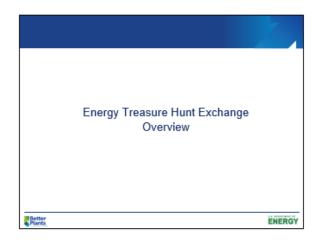
Essential Information						
Plant Contact Informa	Plant Contact Information:					
Corporation Name:			Location:			
Plant Name:			Primary Contact for Assessment:			
Primary Product:			Address			
Industry Type:	Phone:					
pecify if other: E-mail:						
Specific Problems or Areas of Int related to Plant's Energy use:	erest					

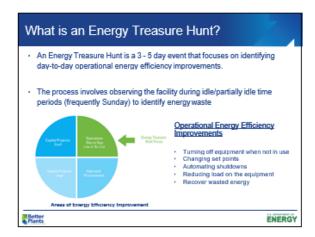
Plant's Operating Schedule:						
Shift No.	Hours of Operation/Day	Days/Week	Weeks/Year	Annual Hours		
1						
2						
3						
Office Hours						
Others						

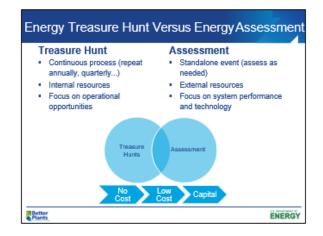
Unit Cost of Energy:						
	1) Please provide unit co	1) Please provide unit costs for different energy types used in your plant and the corresponding unit.				
Instructions:	2) Please provide Steam/Compressed Air cost only if user is buying steam/compressed air from a utility or a third-party enterprise.					
	3) A proxy can be used if there is concern with sharing the cost data					
Energy Type	Unit Price	Unit				
Electricity		\$/				
Natural Gas		\$/				
Steam		\$/				
Other Fuel		\$/				
Compressed Air		\$/				

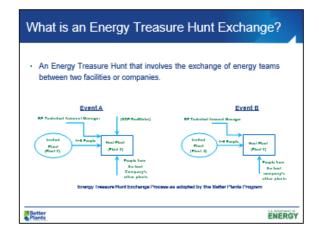
Helpful Data					
Team Information - Optional					
	Team - 1	Team - 2	Team - 3	Team - 4	Team - 5
Area of Focus					
Team Leader					
Member 1					
Member 2					
Member 3					
Member 4					
Member 5					
Member 6					

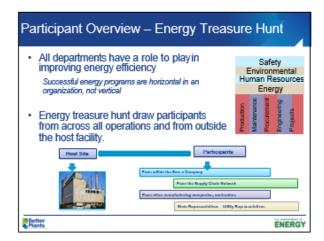

Plant Data:					
Items	Value	Additional Comments			
Annual Production Volume					
Plant Square Footage					
Office Square Footage					
Number of Employees					
Certification (ISO 50001, 140001)					
Energy Management System (Yes/No)					

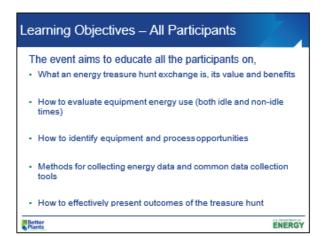

Facility Equipment Data:							
The table below provides a framework of the typical systems in a manufacturing plant, please feel free to add/remove systems from the list as per your facilities configuration.							
Building Equipment	Equipment Number	Size	Estimated (Hrs/year)	Load Factor (%)	Index Unit	Index Value	Control Strategy/ Additional Comments
					kW/100 SCFM		
Compressor					kW/100 SCFM		
Compressor					kW/100 SCFM		
					MMBTU/klb		
Boilers					MMBTU/klb		
					kW/kGal		
Chillers					kW/kGal		
Furnaces							
etc.							

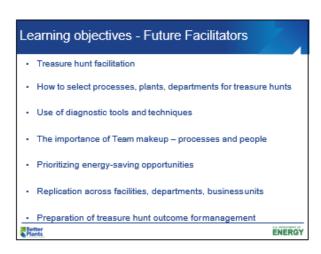

Process Equipment Data:						
The table below provides a framework of the typical processes in a manufacturing plant, please feel free to add/remove processes from the list as per your facilities configuration.						
Process Equipment	Total Size	Estimated (Hrs/year)	Load Factor (%)	Additional Comments/information on the process		
Incinerators						
Furnace 1						
Furnace 2						
Press 1						
Press 2						
Press 3						
Paint booth						
etc.						

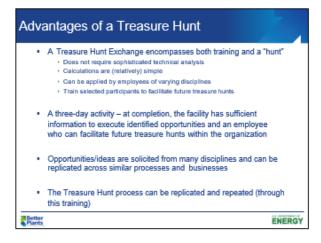

APPENDIX D. ENERGY TREASURE HUNT OPENING PRESENTATION TEMPLATE

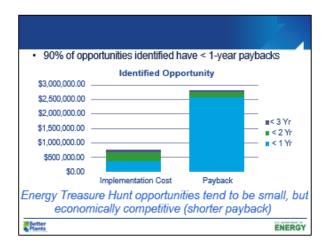


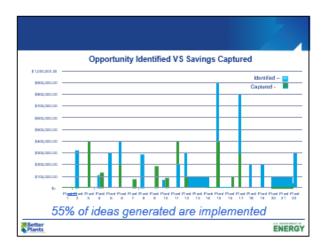


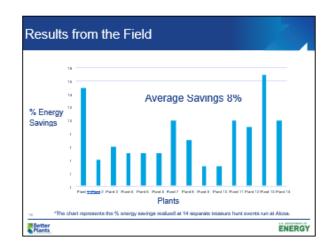


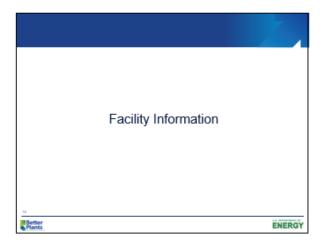


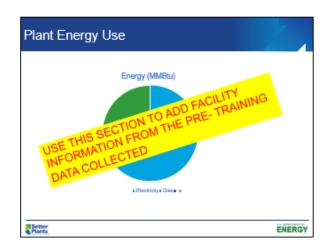


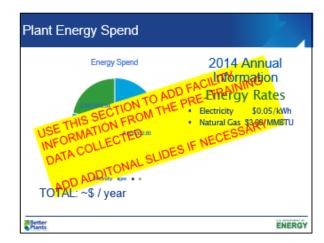


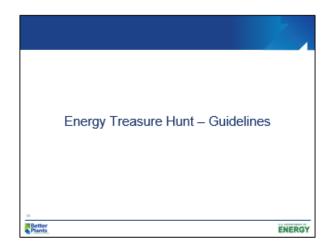


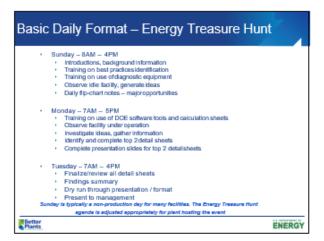


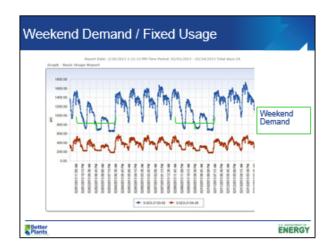


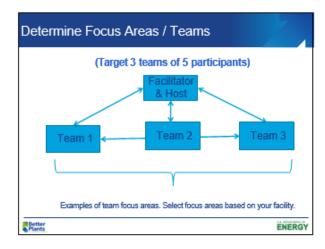




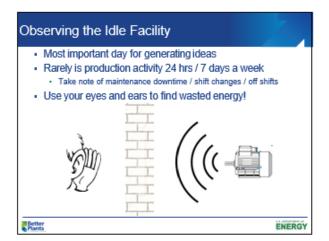


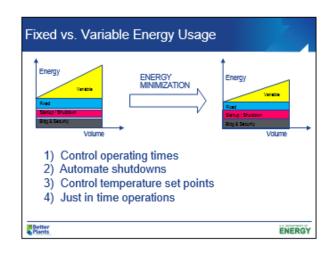


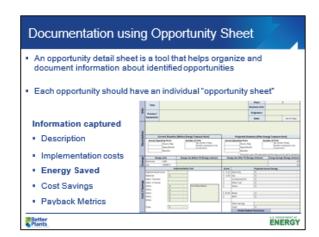


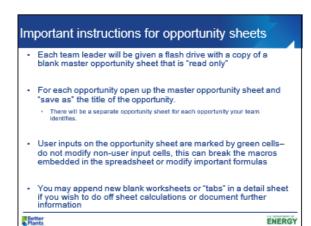


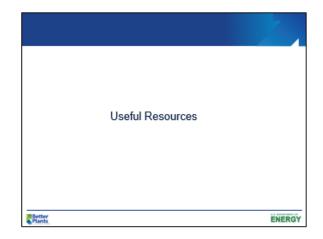


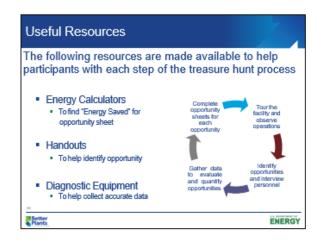


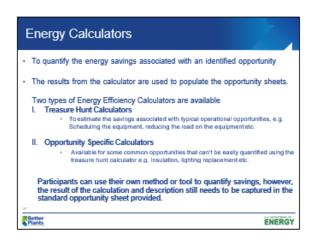


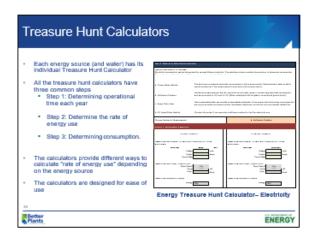


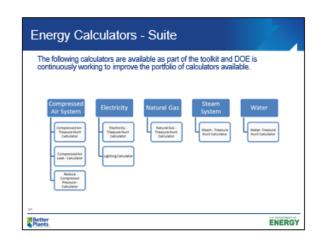


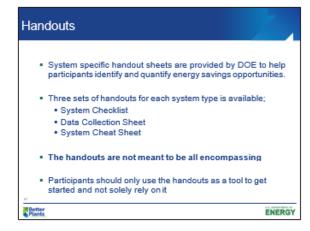


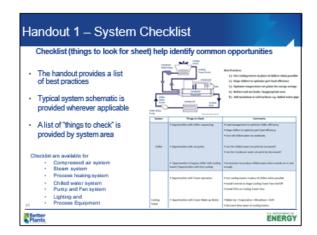


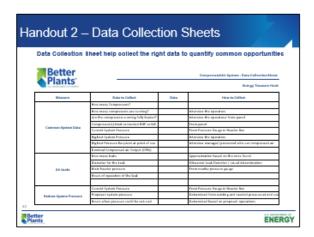


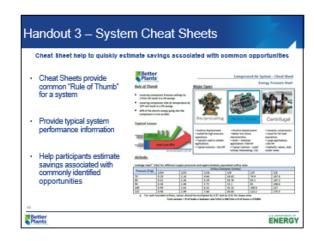


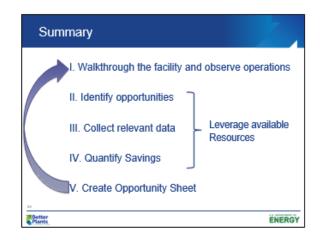














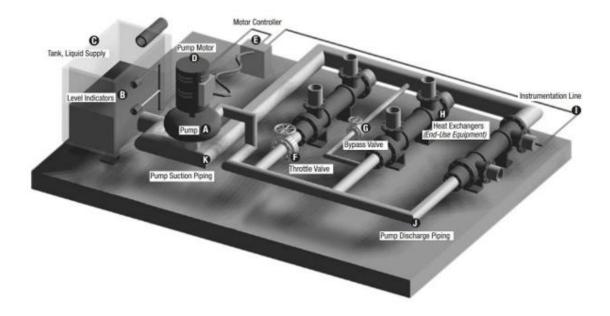
APPENDIX E. CHECKLISTS

Lighting System Check List

Energy Treasure Hunt

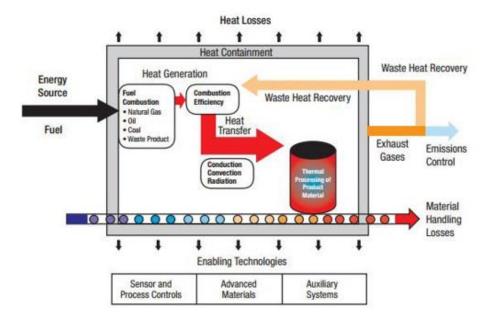
Best Practices

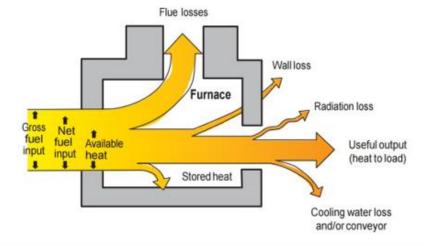
- 1.) Use motion sensors in seldom used area.
- 2.) Turn off fixtures that are blocked by obstructions
- 3.) Turn off/dim lights near windows/ skylights.
- 4.) Use photo sensors for outdoor lighting
- 5.) Determine required light leveland de-lamp


- 6.) Clean dirty and yellowed lenses
- 7.) Lower lights beneath scaffolding
- 8.) Add reflectors to fluorescent lights
- 9.) Look at LED replacement options
- Add task lighting over critical areas and decrease general area lighting.

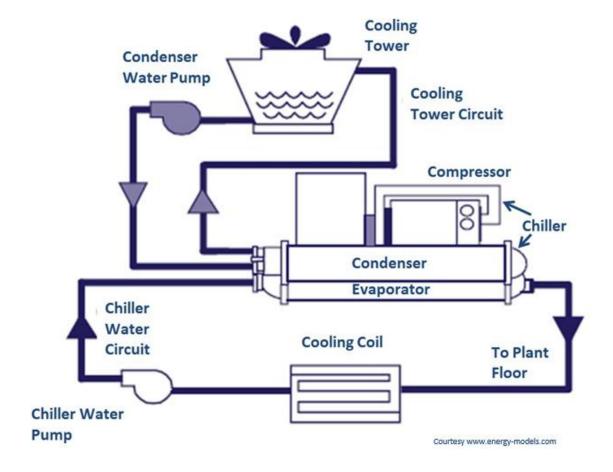
System	Things to Check	Comments		
	Opportunities with lighting levels/quality.	Possibility for de-lamping/dimming.		
		• IES has recommendations by area.		
		Add task lighting over critical areas and decrease general area lighting.		
Indoor Areas – Lighting	Opportunities with lighting replacement.	Incandescent → LED/CFL, e.g. Exit signs		
		Metal Halide → LED; T12 → T8s fluorescents		
	Opportunities with burnt out lamps	• Remove /Replace		
	Opportunity with areas that are infrequently occupied	Candidate for motion/occupancy sensors		
Indoor Areas - Controls	Opportunity with areas that have scheduled occupancy	Candidate for timed switches.		
	Opportunity with areas that have ambient lights	Are lights ON near the windows/skylight? → Photocells		
Outdoors	Opportunities with lighting replacement. Opportunities with lighting controls.	LED in place of HID lamps. Photocell can be used to make the outdoor lights turn ON only when there is no sunlight.		

- 1.) Turn off motors when not in use
- 2.) Size the motors correctly
- 3.) Use energy efficient motors
- 4.) Use cogged V belts or synchronous belt drives
- 5.) Trim impellers or use a VSD instead of using bypass or valves throttling (in cases of excess flow/oversized pumps)
- 6.) Use low head-loss fitting
- 7.) Reduce pipe/duct length and turns
- 8.) Reduce entrance/exit head loss
- 9.) Install variable speed drive (VSD)
- 10.) In intermittent operations, run motor slower and longer



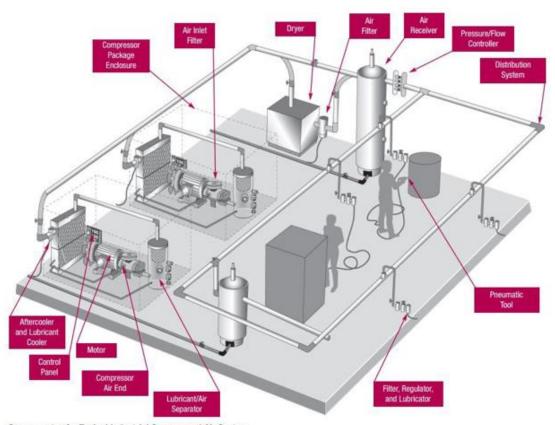

System	Things to Check	Comments
	Opportunity with motor sizing	Oversized motors consume more energy
		Look into resizing the motor or apply variable speed control
	Opportunity with motor efficiency	Are NEMA premium efficiency motors used?
		Are the motors the right type for the application, e.g. totally enclosed vs. partially enclosed?
	Opportunity with motor control	Is the equipment controlled for flow or pressure? Any throttling?
		Is there more flow than required to meet system requirements? → Higher flow requires more energy
Pumps and Fans	Opportunity with scheduling	Can the fan/blower be turned off or down during low production times?
		Can fan/pump be cycled with production throughput?
	Opportunity with degraded motors	Are the motors worn out/eroded? → degraded equipment performance
	O	Are pumps being run dead headed?
	Opportunity with optimizing pump flow	Suction problems – inadequate suction head, poor geometry, obstructions
		Are there opportunities to reduce head?
		Is re-circulation used instead of pump control?
	Opportunity with leaks	Identify and fix air and water leaks
	Are redundant units being run?	Shut them down
System	Opportunity with optimizing duct/pipe sizing/flow paths	Are there any unneeded flow paths? → More workneeded to overcome friction losses
		Is there sufficient distance between fan and the first elbow tee? Fans need piping to be 3 x diameter of the fan blade before the first elbow tee to avoid system effect.

- 1.) Optimize oxygen level in flue (exhaust) gases or optimize combustion burner air-fuel ratio
- 2.) Reduce/eliminate openings and air leakage in the furnace
- 3.) Furnace scheduling, loading, shut down avoiding delays, waits, cooling between operations, etc.
- 4.) Clean heat transfer surfaces radiant tubes, heat exchangers, heater tubes, electrical heating elements
- 5.) Use of flue or exhaust gas heat for combustion air preheating or waste heat recycling


Component	Things to Check	Comments	
Heat Generation	Combustion air leakage Opportunities with Fuel/Air ratio	Does the combustion air leak downstream of control valve? Linkage condition can lead to poor control of the fuel/air mixture over the range of operating conditions. Excess oxygen in the furnace exhaust gases indicates unwanted excessive air Flame un-stability indicates improper fuel/air control	
Heat Containment	Reduce Heat Losses Opportunities with insulation Opportunities with Waste Heat recovery	Higher than necessary operating temperature leads to increased losses Reduce/eliminate openings and air leakage in the furnace Clean heat transfer surfaces Insulate associated piping to avoid sagging and distortion. Is the furnace properly insulated? Any cracks/holes? What is the temperature of the exhaust? Can the heat from the exhaust be recovered and used?	
Enabling Technology	Opportunities with furnace operation/scheduling Opportunities with material handling	·	

For more info – Improving Process Heating System Performance – A Sourcebook for Industry, 3rd Edition.

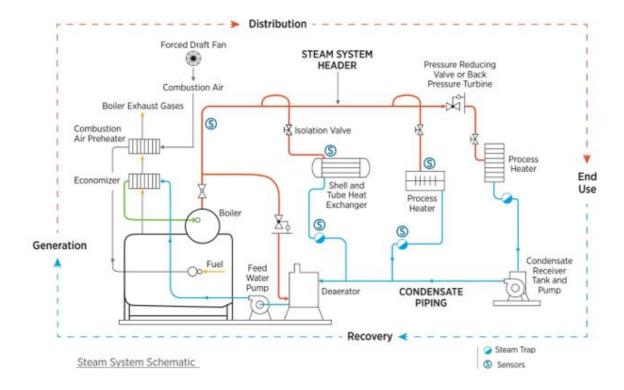
- 1.) Use cooling towers in place of chillers when possible
- 2.) Stage chillers to optimize part-load efficiency
- 3.) Optimize temperature set points for energy savings
- 4.) Reduce end use loads/Inappropriate uses
- 5.) Add insulation to cold surfaces e.g. chilled water pipe
- 6.) Employ Floating Head Pressure Control
- 7.) Improve heat exchanger effectiveness
- 8.) Stage operation of cooling tower fan
- 9.) Employ variable-speed pumping
- 10.) Install VFDs on Cooling Tower Fans


System	Things to Check	Comments		
	Opportunities with chiller sequencing	Load management to optimize chiller efficiency.		
		Stage chillers to optimize part-load efficiency		
		Turn off chilled water on weekends.		
Chiller	Opportunities with set points	Can the chilled water set point be increased?		
		Can the Condenser water set point be decreased?		
	Opportunities to bypass chiller with cooling tower/Opportunities with free cooling	Economizer to produce chilled water when outside air is cool enough		
	Opportunities with Tower operation	Use cooling towers in place of chillers when possible		
		Install Controls to Stage Cooling Tower Fans On/Off		
		Install VFDs on Cooling Tower Fans		
Cooling	Opportunities with Tower Make-up Water	Make-Up = Evaporation + Blowdown + Drift		
Tower		Decrease blow down of cooling towers		
		Conductivity controller to automatically control blowdown		
		Water treatment opportunities		
		Opportunities with evaporation		
	Opportunities with pumping	Sequence pumps using appropriate controls		
	Interfacing chilled water use to production	Turn off when no parts are present		
Distribution and End use	Reduce end use loads	Poduce set points during non-production hours		
	• Reduce end use loads	Reduce set points during non-production hours Add heat exchangers between heated and cooled processes		
		Add heat exchangers between nearen and cooled processes		
	Opportunities with insulation	Add or repair mechanical insulation		
	Inappropriate uses of chilled water	Is chilled water recirculated when it could be shut off?		

- 1.) FixAir Leaks
- 2.) Reduce Compressor Discharge Pressure
- 3.) Restrict compressed air flowon weekends
- 4.) Automate compressor shut off when not needed
- 5.) Switch pneumatic tools to electronic mechanical tools

- 6.) Remove Inappropriate Uses
- 7.) Install sufficient Storage & stabilize system
- 8.) Use VFD machine for trimming
- 9.) Use no loss condensate drain
- 10) Reduce Blow-off in centrifugal compressor

Components of a Typical Industrial Compressed Air System.


System	Things to Check	Comments
	Opportunities with compressor controls	Turned off/down compressor during weekend/between shifts?
		Automatic turnoff based on timer
		Use control scheme optimized for given load
Compressor	Opportunities with optimizing	Pressure drop across the filters/dryer acceptable? Typical 3-5 PSI
Room	compressor discharge pressure	Minimize pressure drop & reduce compressor discharge pressure leads to energy savings
		What is the system pressure and what is the required pressure at end use?
		Energy decreases by 1% for every 2-3 PSI discharge pressure decrease
	Heat recovery Opportunities	
	- Heat recovery opportunities	80% of compressor energy is dissipated as heat.
		Can we use this for space heating or process heating needs?
	Opportunities with compressor	•Is the VFD used on the trim compressor?
	sequencing (multi compressor system)	Programmable Logic Control (PLC)-based multi-compressor controls can be used to sequence based on given load.
	Compressed air storage	Does the system have the necessary air storage?
	- compressed an storage	- Social Capacital National Conference of the Action of the Conference of the Confer
	Opportunity for no loss condensate drain	Zero loss drain separate condensate(water) without air loss
Compressed Air System	• Air leaks	Is there a program to fix leaks?
	Interfacing air use to process line	Turn off when no parts are present
	Opportunities with how compressed air	Solenoid valves can shut off unnecessary air
End Use	used in the process	Are there any unregulated end uses that could benefit from vortex nozzles or FRLs?
		Are there any inappropriate uses of compressed air?
		Example: Personnel cooling, using air to move parts, open blowing, cabinet cooling, padding, mixing, agitation.

- 1.) Reduce Steam demand and pressure
- 2.) OptimizeFuel/Air Ratio
- 3.) FixSteam Traps
- 4.) Insulate Pipes and Tanks
- Recover condensate/flash steam and capture water & heat

- 6.) Preheat boiler feed water
- 7.) Install automated blowdown controls
- 8.) Optimize deaerator vent rate
- 9.) Adjust steam system based on production
- 10) Identify and close off dead legs (unused to sections of steam header)

System	Things to Check	Comments			
Individual Boilers	Opportunity with Boiler efficiency	Are the boilers operating efficiently? When was the last time boiler tune-up was done? (boiler tune up should include minimizing excess air, cleaning boiler heat transfer surfaces, and improving fuel/air ratio control)			
	Opportunity with Blowdown	Automated blowdown results in lesser water wastage Improving feed water treatment can also avoid excessive blowdown Is heat recovery from boiler blowdown possible? Can boiler be turned off on weekends? Can we reset pressure back during weekends/non-production? Can we sequence the boilers so that the boiler operates in higher load? Boilers on high fire operate more efficiently Stack dampers reduce losses			
	Opportunity with scheduling				
	Opportunities with system optimization	The state of the s			
Boiler System	Automated stack dampers	Stack dampers reduce losses			
	Combustion air temperature	Hotter the combustion air, lesser work on boiler Possible to direct warmest air to combustion intake?			
	Feed water temperature	·			
	Opportunity with header pressure	Can boiler header pressure be reduced?			
Distribution System	Opportunity with dead legs Recover steam for low-pressure applications	Closing off dead legs can reduce the amount of steam needed Install back-pressure turbines instead of Pressure reducing valves (PRVs)			
	Steam leaks Un-insulated lines/ Tanks	Steam Leaks, un-insulated steam lines/condensate lines/flash tanks; all result in energy being lost.			
	Steam Trap Failure	Failed open traps have significant energy losses.			

Best Practices

- 1.) Slow the process equipment during low production
- 2.) Switch off auxiliary process equipment during idle time
- 3.) Eliminate inappropriate uses of compressed air in machine lines
- 4.) Optimize control set points
- 5.) Waste Heat recovery

Any recommended changes to production must involve discussion and agreement with production leaders

System	Things to Check	Comments
	Opportunities with scheduling the production line during non-production	Can the equipment be turned off during breaks? Is the equipment turned off right after the end of the shift? Can the warm up time be reduced?
	Opportunities during periods of low load/ idle time	Can the equipment be slowed down when production is low?
		Is batch production possible?
Production Line - General	Opportunity with set points. (Temperature/ pressure etc.)	Is it possible to change the min/max set point requirements to save energy?
	Waste Heat Recovery opportunities	Is there wasted energy that can be recovered or reused?
	Opportunities with system optimization	What is the overall system requirement? Operate 2 pieces of equipment at 80% instead of 1 at 40%?
		Are there any gaps in the production line that can be shortened/eliminated (where a product can lose heat)
	Opportunities with auxiliary equipment control	Are exhaust systems/steam supply/water supply inter- locked with production as opposed to running continuously
Production Line – Auxiliary Equipment	Opportunities with auxiliary equipment scheduling	Can pumps, agitators, etc. be pulsed rather than run full time? Throttling of fluid flow? Heaters left on during idle time
	Compressed air inappropriate use in production	E.g. Compressed air used to move parts/personnel cooling

APPENDIX F. DATA COLLECTION SHEETS

Lighting System - Data Collection Sheet

Measure		Data to Collect	Data	How to Collect
		Average hours of office Lighting		From Schedule if automated/Interview
		Average hours of floor Lighting		From Schedule if automated/Interview
		Average Lumens level in Office Spaces		From light meter
Common System Data		Average Lumens level in manufacturing floor		From light meter
		Existing Control Strategy in Offices		Interview with plant personnel
		Existing Control Strategy on the Floor		Interview with plant personnel
		Daylighting potential, e.g. windows, skylights		Interview with plant personnel
		Existing type of lights		Fixture label/See Cheat Sheet
		Number of Fixture		Physical counting/From lighting plans
Lighting Replacements 1 (Location -		Wattage of Fixture (including ballast)		Fixture label/Reference table online
(Location -		Hours of Operation		From Schedule if automated/Interview
		Wattage of Proposed fixture		Specification Sheets - Available Online
)	Existing Type of lights		Fixture label/See Cheat Sheet
		Number of Fixture to be turned off		Physical Counting/From lighting plans
Turn Off Lights (Location -)		Wattage of Fixture (including ballast)		Fixture label/Reference table online
(Location -		Existing Hours of Operation		From schedule if automated/Interview
		Proposed Hours of Operation		Specification Sheets - Available Online
		Existing Type of lights		Fixture label/See Cheat Sheet
		Number of Fixtures		Physical Counting/From lighting plans
		Number of lamps per fixture		Physical Counting
De-lamp Lights (Location -)		Number of lamps to be de-lamped per fixture		Based on the amount of excess lighting levels
(Location)		Existing Wattage of Fixture (including ballast)		Fixture label/ Reference table online
		Wattage of Fixture (including ballast) upon de-lamping		Calculate from percent de-lamped
		Existing Hours of Operation		Interview with plant personnel
		Existing Type of lights		Fixture label/See Cheat Sheet
		Number of Fixture to be on Sensor		Physical Counting/From lighting plans
Occupancy Sensors		Wattage of Fixture (including ballast)		Fixture label/Reference table online
(Location -		Existing Hours of Operation		From Schedule if automated/Interview
		Proposed Hours of Operation		Interview with plant personnel
		Number of Occupancy sensor		Good judgement

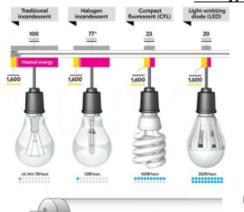
Measure	Data to Collect	Data	How to Collect
	Condition of seals & impeller		Visual inspection
	Condition of piping (leaks, friction & cavitation)		Visual inspection
Pumps - Common System Data	Amount of static and dynamic head		Name Plate/Interview operators
rumps - common system bata	Suction pressure & discharge pressure		Pump gauges
	Size of pumps relative to load		
	Pumping system controls		Interview operators
	Motor Location/System it's used in		
	Motor Rating		Name Plate
Turn off fan/pump motor when possible	Percent Load (%)		Interview the operators
1	Nameplate Efficiency		Name Plate
	Current operating hours per year		Interview the operators
	Proposed operating hours per year		Determined based on proposed operations
	Motor Location/System it's used in		
	Motor Rating		Name Plate
Turn off fan/pump motor when possible	Percent Load (%)		Interview the operators
2	Nameplate Efficiency		Name Plate
	Current operating hours per year		Interview the operators
	Proposed operating hours per year		Determined based on proposed operations
	Motor Location/System it's used in		
., ., ., ., ., ., ., ., ., ., ., ., ., .	Motor Rating		Name Plate
Belt Replacement (notched belt)	Nameplate Efficiency		Name Plate
	Current operating hours per year		Interview the operators

Chilled Water System - Data Collection Sheet

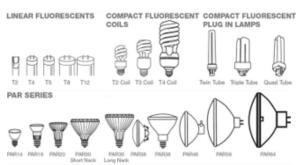
Measure Data to Collect		Data	How to Collect
	How many Chillers?		
	How many Chillers are running?		Interview the operators
	Chillers Capacity(s) HP or kW		From panel/Nameplate
Common System Data	Cooling Tower Size		From panel/Nameplate
Common System Data	Current Chilled Water Temperature Pressure		From temperature Gauge on chilled water side
	Current Condenser Water Temperature Pressure		From temperature Gauge on condenser water side
	Lowest Temperature Required at floor		Interview operators who run equipment that use chilled water
	Is the system closed or open loop?		Interview operators who run equipment that use chilled water
	Current setpoint Temperature		From temperature Gauge on chilled water side
Reduce/Setback Chilled water Temperature	Proposed setpoint Temperature		Determined from existing and needed temperature at end use
remperature	Hours when pressure could be reduced		Determined based on proposed operations
	Current setpoint Temperature	From temperature Gauge on condenser water side	
Increase Condenser Temperature	Proposed setpoint Temperature		Determined from existing and needed temperature at end use
	Hours when pressure could be reduced		Determined based on proposed operations

Measure	Data to Collect	Data	How to Collect
	How many compressors?		
	How many compressors are running?		Interview the operators
	Are the compressors running fully loaded?		Interview the operators/from panel
	Compressor(s) total connected BHP or kW		From panel
Common System Data	Current System Pressure		From Pressure Gauge in Header line
	Highest System Pressure		Interview the operators
	Highest Pressure Required at point of use		Interview manager/personnel who use compressed air
	Nominal Compressed air Output (CFM)		From panel
	How many leaks		Approximation based on the ones found
	Diameter for the Leak		Ultrasonic Leak Detector/visual determination
Air Leaks	Main header pressure		From nearby pressure gauge
	Hours of operation of the leak		
	Current System Pressure		From Pressure Gauge in header line
Reduce System Pressure	Proposed system pressure		Determined from existing and needed pressure at end use
	Hours when pressure could be reduced		Determined based on proposed operations
	Location		
	Inappropriate operation		Open blow-off, air, motor, etc.
Use Blower instead of compressed air	Main header pressure		From nearby pressure gauge
	Hours of operation of the blower		Interview manager/personnel who use compressed air
	Diameter of the blower orifice		Using suitable tool/method
	Compressor Size		Name Plate
	Area of waste heat use		Space heating? At process?
Waste heat recovery	Average power drawn by compressor		Digital Panels on compressor, data logging, spot measurement
	Average hours of operation of the compressor		Digital Panels on compressor, data logging, spot measurement
	Purge Time		Timer
	Cycle Time		Timer
	Number of Drains		
Lossless Drain	Type of existing drain & performance		Interview operators
	Pressure		From nearby pressure gauge
	Diameter of drain orifice		Scale/approximation
	Operating Hours		Operating hours of compressor system
	•		

Measure	Data to Collect	Data	How to Collect
	How many boilers?		
	How many boilers are running?		Interview the operators
	Boiler capacity(s) (BTU or lbs./hour)		From panel
	Total generation capacity (lbs./hour)		From panel
Samuel Santana Bata	Average steam generation rate (lbs./hour)		From panel
Common System Data	Average boiler blowdown rate		Interview the operators
	Current System Pressure		From pressure gauge in header line
	Highest Pressure on header		Interview the operators
	Highest Pressure Required at floor		Interview manager/personnel on the floor
	Stack Temperature		
	How many leaks/defective traps		Approximation based on the ones found
	Diameter of the leak		Ultrasonic Leak Detector/visual determination
Steam Leaks	Pressure on line		From nearby pressure gauge
	Hours of operation of the leak (or boiler)		
- 1 1-	Current System Pressure		From pressure gauge in header line
Reduce System Pressure/ Pressure Setback	Proposed system pressure		Determined from existing and needed pressure at end use
Setback	Hours when pressure could be reduced		Determined based on proposed operations
	Boiler size		Name Plate
Marke bank account	Area of waste heat use		Combustion Air? At process?
Waste heat recovery	Average stack temperature		Digital panels, data logging, spot measurement
	Average hours of operation of the boiler		Digital panels, data logging, spot measurement


APPENDIX G. CHEAT SHEETS

Lighting System – Cheat Sheet


Energy Treasure Hunt

Identifying Lighting Types

T12 1.5 inch diemeter

T8 1 inch diemeter

LED Options

LED Fixtures – Lamp + Fixture

LED Retrofits – Lamp to fit into existing fixture

Lighting Level Recommendations by IES

Offices	Foot-candles	Assembly	Foot- candles	Electronic Manufacturing	Foot-candles
Drafting	50-200	Rough Easy seeing	25-50	Impregnating	20-50
General/private offices	50-100	Rough difficult seeing	50-100	Insulating coil windings	50-100
Conference Areas	20-70	Medium	100-200	Sheet Metal Works	Foot-candles
Corridors, Stairways	20	Fine	200-500	General	100
Lobbies, lounges	0-20	Extra Fine	500-1000	Galvanized, inspection	100-200
Automobile Manufacturing	Foot-candles	Machine Shop	Foot- candles	Warehousing/ Storage	Foot-candles
Final assembly, finishing	200	Medium bench, rough grinding, buffing	50-100	Inactive	5-10
Body assembly	100	Rough bench	20-50	Active – Rough bulky	10-20
Body manufacturing	100	Fine bench and work	200-500	Active – Medium	20
Frame assembly	50	Welding	20-50	Active – Fine	20-50

Lighting Controls

Dimmers:

To provide variable indoor lighting.

Occupancy sensors:

To turn on/off lights based on activity in light levels.

Photo sensors:

To turn on/off lights based on ambient light levels.

Timers:

To turn on and off lights at specific times.

Tips

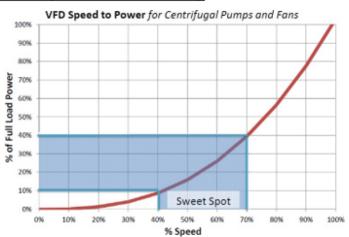
- · Make use of lighting plans to get the count of lights
- De-lamping is an easy way to reduce lighting levels and energy use
- LED retrofits (available are all applications) are cheaper than LED fixtures
- Leverage sky lighting

Centrifugal Fan and Pump VFD Power Relationship

% Loading	Cycling % Power	VFD % Power
110%	100%	133%
100%	100%	103%
90%	90%	78%
80%	80%	56%
70%	70%	39%
60%	60%	26%
50%	50%	16%
40%	40%	9%
30%	30%	4%
20%	20%	1%
10%	10%	0%
0%	0%	0%

VFD inverter efficiency ~ 97%

Affinity Flow \propto Speed Flow \propto Speed² Flow \propto Speed³


Real World %Power = (%Speed)^{2,7}

Calculating kWh

$$Fump \ BHP = \frac{GPM \times Head \ (ft \ w. \ g.)}{3960 \times Efficiency}$$

$$Fan \ BHP = \frac{CFM \times SP \ (in. \ w. \ g)}{6356 \times Efficiency}$$

$$kW = \frac{Brake \ Horsepower \times 0.746}{Motor \ Efficiency}$$

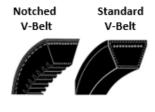
$$kW = \frac{Amp \times Volt \times \sqrt{3} \times Power \ Factor}{1000}$$

Consideration Criteria for VFD

- High Horse power (>15 hp)
- Long operating hours (>2000 hrs)
- Loads that could benefit from soft start/shut-off capability
- Loads with variable torque requirements

* Avoid running VFDs fully loaded by setting maximum speed to ≤90%.

Conversion Factors


 $1 \ l/s = 15.85 \ GPM, 1 \ l/s = 2.12 \ CFM$ $1 \ psi = 2.31 \ ft \ w. \ g., 1 \ psi = 27.7 \ in \ w. \ g.$ $1 \ hp = 0.746 \ kW$

Motor Efficiency and Power Factor

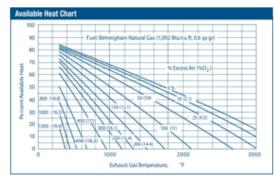
Motor Name Plate (HP)	Standard Efficiency	Premium Efficiency	Approx. Power Factor
1	74	82	0.62
5	84	90	0.70
10	87	91	0.73
25	90	93	0.77
50	91	94	0.80
100	92.2	94.7	0.82
250	93.3	95.2	0.85
500	94.0	95.5	0.91
1000	94.5	95.7	0.92

Power Transmission

Coupling Type	Efficiency
Gear Drives	55%-98%
Standard V-Belt	~92%
Notched V-Belt	~95%
Synchronous Belt	~98%
Direct Shaft Coupling	100%

Rules of Thumb

- Air-Fuel Ratio: For most systems 2- 3% of oxygen with a 10-50 ppm combustible indicates ideal operating conditions
- Preheated Combustion Air: Processes operating above 1600°F are generally good candidates for air preheating


Percent Fuel Savings gained from Preheated Combustion Air

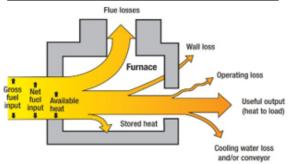
Furnace Exhaust	Preheated Air Temperature, 'F					
Temperature, 'F	600	800	1,000	1,200	1,400	1,600
1,000	13	18	-	-	-	-
1,200	14	19	23	-	-	-
1,400	15	20	24	28	-	-
1,600	17	22	26	30	34	-
1,800	18	24	28	33	37	40
2,000	20	26	31	35	39	43
2,200	23	29	34	39	43	47
2,400	26	32	38	43	47	51

Efficiency Reduction caused by soot deposits

Soot Layer Thickness						
1/32 inch 1/16 inch 1/8 inch						
2.5%	4.5%	8.5%				

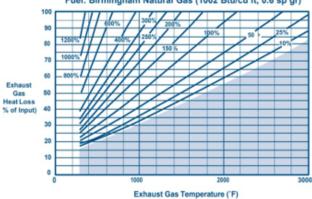
Savings obtainable by tuning burner air-gas ratio

Determine the available heat under present and desired conditions by reading up from the flue gas temperature to the curve representing the excess air or O_2 level; then, read left to the percentage available heat (AH)


% Fuel Savings =
$$100 \times \frac{\% \text{ AH}_{Desired} - \% \text{ AH}_{Actual}}{\% \text{ AH}_{Desired}}$$

Potential applications of oxygen-enhanced combustion

Industry	Applications
Steel	Reheat, soaking pits, ladles
Aluminum	Melting
Copper	Smelting and melting
Glass	Melting
Pulp and Paper	Lime kilns, black liquor boilers
Petroleum	Process heaters, crackers
Power Production	Coal-fired steam boilers
Chemical	Sulfur


Process Heating System – Cheat Sheet Energy Treasure Hunt

Energy loss diagram in a fuel-based process heating system

Heat lost in exhaust gases @ various exhaust gas temperatures and percentages of excess air

Fuel: Birmingham Natural Gas (1002 Btu/cu ft, 0.6 sp gr)

Commonly used waste heat management systems by

Ultra-High Temperature (>1600°F)	High Temperature (1200°F to 1600°F)	Medium Temperature (600°F to 1200°F)	Low Temperature (250°F to 600°F)	Ultra-Low Temperature (< 250°F)
Refractory (ceramic) regenerators Heaf recovery boilers Regenerative burners Radiation recuperator Waste heat boilers including steam turbine-generator based power generation Load or charge preheating	Convection recuperator (metallic) – mostly stubular - Radiation recuperator Regenerative burners Heat recovery boilers Waste heat boilers including steam surbine-generator based power generation Load or charge prehability of the proper generation wheels (regenerative system)	Convection recuperator (metallic) of many different designs Finned tube heat exchanger (economizers) Shell and tube heat exchangers for water and liquid heating Self-ecuperative burners Waste heat bollers for steam or hot water condensate Load-charge (convection section) preheating Metallic heat wheel Heat pipe exchanger	Convection recuperator (metallic) of many different designs Finned tube heat exchanger (economizers) Shell and tube heat exchangers for water and liquid heating Heat pumps Direct contact water heaters Condensing water heaters or heat exchangers Metallic heat wheel Heat pipe exchanger	Shell and tube type heat exchangers Plate type heat exchangers Air heaters for waste heat from liquids Heat pumps HVAC applications (i.e., recirculation water heating or glycol-water heaters heaters heaters heaters water heaters. Non-metallic heat exchangers

ENERGY

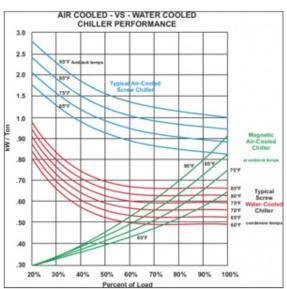
Rules of Thumb for Chilled Water Systems

- ΔT of 10°F = 2.4 gpm/ton; ΔT of 12°F = 2 gpm/ton; ΔT of 16°F = 1.5 gpm/ton.
- On a centrifugal chiller, if the chilled water temperature is raised by 2°F to 3°F, the system efficiency can increase
- . On a centrifugal chiller, if condenser water temperature is decreased by 2°F to 3°F, the system efficiency can increase by 2 - 3%.
- For every 10°F of water temperature drop across the cooling tower, there is an evaporative loss of approximately 1%, equating to 2.5 to 4.0 gpm per 100 tons of capacity.

Rules of Thumb for HVAC Systems

Ventilation Rate	5 CFM/person		Rebuilt Systems	55°F sup	ply air	
Fan Energy	1000-1500 CFM/hp		Design	30°- 40° rise reheat coils		
Chiller Size	300-400 ft ² /ton			55° colo	l deck	
Ton	12,000 BTU/ton	Set points for distribution system	Dual Duct and Multizone design	70-105° hot deck – with ODA Reset Schedule		
Chilled Water	2.4 GPM/ton (10°F rise)			55°F cooling		
Condenser Water	3 GPM/ton (10°F rise)		VAV	10% box leakage flow		
People Load	450 BTU/person/hr			40-50% minimum fan volume		
Infiltration	0.5-1.5 ACH without building pressurization	Typical Chiller Efficiencies in kW/ton				
Heat Transmission	Overall Building – 0.15 to 0.5 BTU/ft²/F	Chiller Type	ASHRAE Standard 90.1 Minimum	Good	Best	
Through Envelope	See ASHRAE Handbook of	Air- Cooled	1.26	1.21	1.13	
	Fundamentals for accurate heat loads by envelope types	Water - Cooled	0.72	0.65	0.45	

Quick Calculations and Conversions


$$EER = COP \times 3.412$$

 $kW/Ton = 12/EER$
 $kW/Ton = 12/(COP \times 3.412)$
 $1 psi = 2.31 ft w. g.$
 $1 l/s = 15.85 GPM$
 $1 l/s = 2.12 CFM$

 $Q(Btu/hr) = 1.08 \times CFM \times \Delta T (Air Sensible Heat)$

 $Q(Btu/hr) = 500 \times GPM \times \Delta T (Chilled Water)$

 $Q(Btu/hr) \ = 0.69 \times CFM \times \Delta \left(\frac{gr}{lb}\right) (Air\ Latent\ Heat)$

 $Q(Btu/hr) = 4.5 \times CFM \times \Delta h (Air Total Heat)$ Ton (Cooling Tower) = 15 MBH = 15,000 BTU/h

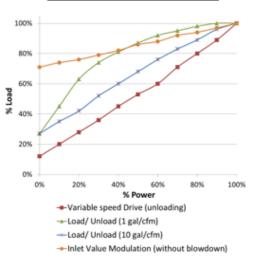
Rules of Thumb

- Lowering compressor pressure settings by 2 PSIG results in a 1% savings
- Lowering compressor inlet air temperature by 10°F results in a 2% savings
- 80% of the electric energy going into compressors is lost as heat

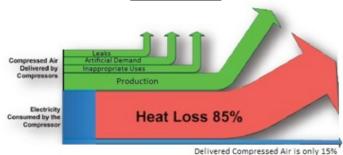
Efficiency Index - kW/CFM

- Compressor data sheet (CAGI) provides kW/CFM at the rated capacity and the full load pressure
- Logging the energy consumption by the compressor

Major Types


Positive displacement	Positive displacement	Dynamic compression
Suited for high pressure operations	Better turn down characteristics	Good for full load operations
Typically used in smaller applications	Small – midsized applications <500 HP	Large applications >500 HP
Typical Controls – On/Off	Typical Controls – Load/ Unload, Modulating, VSD	Butterfly Valves, Inlet Guide Vanes

Air Leaks (CFM)


Pressure	Orifice Diameter (inches)					
(psig)	1/64	1/32	1/16	1/8	1/4	3/8
70	0.29	1.16	4.66	18.62	74.4	167.8
80	0.32	1.26	5.24	20.76	83.1	187.2
90	0.36	1.46	5.72	23.1	92	206.6
100	0.40	1.55	6.31	25.22	100.9	227
125	0.48	1.94	7.66	30.65	122.2	275.5

^{*}For well-rounded orifices, values should be multiplied by 0.97 and by 0.61 for sharp ones

Power drawn @ Part Load

Typical Losses

Inappropriate Uses	Alternatives	
Clean up, drying, Process cooling	Low pressure blowers, electric fans brooms	
Sparging	Blowers and mixers	
Aspirating, atomizing	Low pressure blower	
Vacuum generator	Dedicated Vacuum pump	
Air operated diagram pumps	Electric pump with proper regulator	
Air motor	Electric motor	
Idle equipment	Air stop valve at the inlet	
Abandoned equipment	Disconnect air supply	

^{**}Cost savings = # of leaks × leakage rate (cfm) × kW/cfm × # of hours × \$/kWh

Rules of Thumb

- Average efficiency of a steam boiler is 80%.
- 10 PSI drop in header pressure is 1% energy reduction
- Every 10.7°F rise in boiler feedwater temperature yields ~1% steam energy savings
- Unmaintained steam system 15% to 30% of traps failed
- Ideal, maintained steam system 5% of traps failed

Improve Boiler Combustion Efficiency

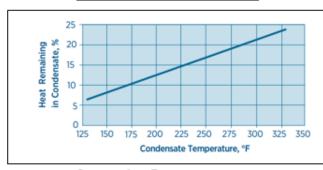
		Combustion Efficiency					
Excess	5 (%)	Flue gas temp. minus combustion air temp (F)					
Air	Oxygen	200	300	400	500	600	
9.5	2.0	85.4	83.1	80.8	78.4	76.0	
15.0	3.0	85.2	82.8	80.4	77.9	75.4	
28.1	5.0	84.7	82.1	79.5	76.7	74.0	
44.9	7.0	84.1	81.2	782.2	75.2	72.1	
81.6	10.0	82.8	79.3	75.6	71.9	68.2	

Insulate Steam and Condensate Lines

Heat Loss per 100 feet of Uninsulated steam, line, MMBTU/yr						
Line		Stean	n Pressui	re (psig)		
Diameter (in.)	15	150	300	600		
1	140	285	375	495		
2	235	480	630	840		
4	415	850	1120	1500		
8	740	1540	2030	2725		
12	1055	2200	2910	3920		

Operating Pressure (psig)	Feed water Temperature, F					
	50	100	150	200	250	
150	1178	1128	1078	1028	977	
450	1187	1137	1087	1037	986	
600	1184	1134	1084	1034	984	
\$/1000 lbs of steam = \$/MMBTU × 1000 lbs × Btu/lb						

Calculating Steam Cost Energy required to produce one pound of saturated steam, BTU


Combustion Efficiency \times 10⁶

Heating Value of Fuels

Fuel Type	Units	LHV	нни		
Natural Gas	Btu/CF	983	1,089		
Residual Oil	Btu/Gal	140,353	150,110		
LPG	Btu/Gal	84,950	91,410		
LNG	Btu/CF	74,720	84,820		
Coal - Bituminous	Btu/lbs	11,230	11,723		

Higher Heating Value (HHV): Total energy from combustion process Lower Heating Value (LHV): Assumes eat of condensation cannot be

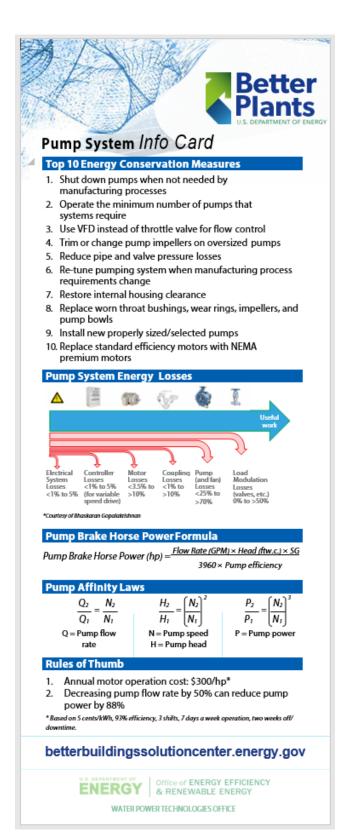
Return Condensate to Boiler

Losses with steam Trap Failure

Trap Orifice	Steam Loss, lb/hr					
Diameter (in.)	15 psig	100 psig	150 psig	300 psig		
1/32	0.85	3.3	4.8	-		
1/16	3.4	13.2	18.9	36.2		
1/8	13.7	52.8	75.8	145		
3/16	30.7	119	170	326		
1/4	54.7	211	303	579		
3/8	123	475	682	1,303		

Conversion Factors

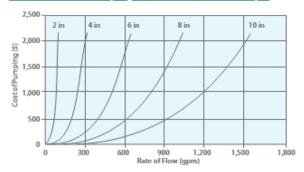
1 boiler hp = 33,475 Btu/hr1 boiler hp = 9.8 kW1 lb/hr steam (300 psi, staturated) = 1,202 Btu/hr 1 gal water = 8.35 lb


1 psi = 6.89 kPa

Steam Trap Failure

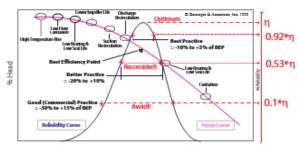
	Obvious Signs		Less Obvious Signs
•	Steam flashing	•	Higher than necessary pressure
•	Water Hammer	•	Excessive condensate & chemical losses
•	Pump cavitation	•	Condensate water too hot
		•	Boilers running continuously

APPENDIX H. INFO CARDS



Pump System Info Card

Unit Conversion


1 ft w.c. = 0.43 psi; 1 GPM = 0.00144 MGD; 1 hp = 0.746 kW

Annual Water Pumping Cost for 1,000 Feet of Pipe

*Based on 1,000 ft. for clean iron and steel pipes (schedule 40) for pumping 70°F water. Electricity rate of 0.05 \$/kWh and 8,760 operating hours annually. Combined pump and motor efficiency of 70%.

Pump Curve Sensitivity for Pump Reliability

*Courtesy of P. Barringer

% Flow

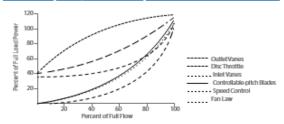
Energy Cost for Pump Driven by 100-hp Motor								
Operating	Ene	Energy Costs for Various Electricity Costs						
Operating Time	2¢ per kWh	4¢ per kWh	6¢ per kWh	8¢ per kWh	10¢ per kWh			
1 hour	\$1.60	\$3.30	\$4.90	\$6.60	\$8.20			
24 hours	\$39	\$79	\$119	\$159	\$198			
1 month	\$1,208	\$2,416	\$3,625	\$4,833	\$6,042			
1 year	\$14,500	\$29,000	\$43,600	\$58,000	\$72,600			

Resources

- 1. Integrated EnergyTool Suite by US Department of Energy
- Improving Pumping System Performance: A Sourcebook for Industry by US Department of Energy
- 3. Pump Tip Sheets by US Department of Energy

betterbuildingssolutioncenter.energy.gov

ORNL ID# 109885



Fan System Info Card

Top 5 Energy Conservation Measures

- Shut down fans when not needed by manufacturing processes
- Use VFD instead of modulating dampers for air flow control
- Use VFD instead of inlet guide vanes for air flow control
- 4. Replace standard V-belts with cogged V-belts
- 5. Operate close to Best Efficiency Point

Fan Capacity Control Options

Fan Brake Horse Power Formula

Flow Rate (CFM) × Head (in w.c.)

Fan Brake Horse Power (hp) = -

6356 x Fan Efficiency

Fan Affinity Laws

$$\frac{Q_2}{Q_1} = \frac{N_2}{N_1}$$

$$\frac{H_2}{H_1} = \left(\frac{N_2}{N_1}\right)$$

$$\frac{P_2}{P_1} = \left(\frac{N_2}{N_1}\right)$$

Q = Fan flow rate

N = Fan speed H = Fan head P = Fan power

Rules of Thumb

- 1. Fan power: 1000-1500 CFM/hp
- Fan annual energy cost: \$350/1000 CFM (24/7 operation)
- 3. Air handling unit fan air flow sizing: 400 CFM/ton

Unit Conversion

1 in w.c. = 0.036 psi; 1 CFM = 28.3 l/min; 1 HP = 745.7 W

betterbuildingssolutioncenter.energy.gov

ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Fan System Info Card

Air C	Air Density Correction Factors									
Tamn		Altitude (ft)								
Temp (°F)	0 (Sea Level)	1000	2000	3000	4000	5000	6000	7000		
50	1.04	1	0.97	0.94	0.9	0.87	0.84	0.81		
55	1.03	0.99	0.96	0.93	0.89	0.86	0.83	0.8		
60	1.02	0.98	0.95	0.91	0.88	0.85	0.82	0.79		
70	1	0.96	0.93	0.89	0.86	0.83	0.8	0.77		
80	0.99	0.95	0.92	0.88	0.85	0.81	0.79	0.76		
90	0.97	0.94	0.90	0.86	0.83	0.8	0.77	0.75		
100	0.95	0.93	0.88	0.85	0.81	0.78	0.75	0.73		
110	0.94	0.92	0.86	0.83	0.8	0.77	0.74	0.72		
120	0.93	0.9	0.85	0.82	0.79	0.76	0.73	0.71		
130	0.91	0.88	0.83	0.81	0.78	0.75	0.72	0.70		
140	0.89	0.86	0.81	0.8	0.77	0.73	0.71	0.68		
150	0.87	0.84	0.80	0.79	0.75	0.72	0.70	0.67		

^{*}Air Density at sea level and 70°F: 0.075 lbm/ft¹

Air Speed and Volume Flow Rate Calculation Formulas

Air speed using actual air density $V\left(\frac{ft}{min}\right) = 1096.7 \times \sqrt{\frac{P_{V}(in.w.c.}{D}\left(\frac{lbs}{ft^3}\right)}$

Air speed using air density at sea level and 70° F $V\left(\frac{ft}{min}\right) = 4005 \times \sqrt{P_{v(in. w.c.)}}$

Air volume flow rate $Q\left(\frac{ft^3}{min}\right) = A_i(ft^2) \times V\left(\frac{ft}{min}\right)$

Air velocity pressure $P_v = P_\tau - P_\tau$

Where: V=Air speed; P_v=Air velocity pressure; D=Air density; Q=Air volume flow rate; A=Cross section area; P_v=Air total pressure; P_s=Air static pressure

Energy Cost for Fan Driven by 100-hp Motor							
Operating	Energy Costs for Various Electricity Costs						
Time	2¢ per kWh	4¢ per kWh	6¢ per kWh	8¢ per kWh	10¢ per kWh		
1 hour	\$1.30	\$3.30	\$4.90	\$6.60	\$8.20		
24 hours	\$39	\$79	\$119	\$159	\$198		
1 month	\$1,208	\$2,416	\$3,625	\$4,833	\$6,042		
1 year	\$14,500	\$29,000	\$43,600	\$58,000	\$72,600		

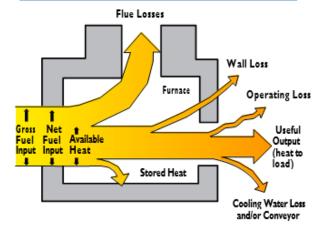
^{*}Assuming 90% motor efficiency

Resources

- Improving Fan System Performance: A Sourcebook for Industry by US Department of Energy
- 2. Fan System Assessment Tool (FSAT) by US Department of Energy
- Advanced Variable Air Volume System Design Guide by Energy Design Resources

betterbuildingssolutioncenter.energy.gov

ORNL ID# 109861



Process Heating System Info Card

Top 10 Energy Conservation Measures

- 1. Check and optimize burner air-to-fuel ratios
- 2. Consider oxygen-enriched combustion
- 3. Check and clean heat transfer surfaces
- 4. Reduce air infiltration in furnaces
- 5. Install furnace pressure controllers
- 6. Reduce radiation losses from heating equipment
- Install waste heat recovery systems on fuel-fired furnaces
- 8. Preheat combustion air
- 9. Use flue gases to preheat loads
- 10. Use waste heat for external processes

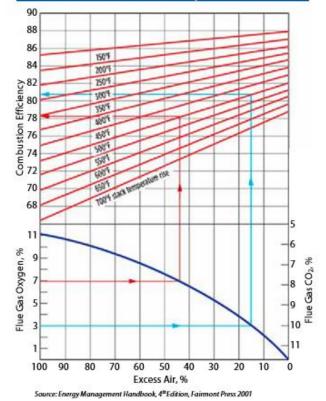
Energy Loss Diagram in a Fuel-Based Process Heating System

Resources

- Improving Process Heating Systems Performance: A Sourcebook for Industry by US Department of Energy
- Process Heating Assessment and Survey Tool (PHAST) by US DOE

betterbuildingssolutioncenter.energy.gov

ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY



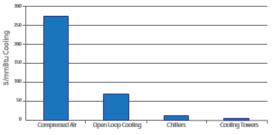
Process Heating System Info Card

Percent Fuel Savings Gained from Using Preheated Combustion Air

Furnace	Preheated Air Temperature (F)							
Exhaust Temp (F)	600	800	1,000	1,200	1,400	1,600		
1,000	13%	18%	NA	NA	NA	NA		
1,200	14%	19%	23%	NA	NA	NA		
1,400	15%	20%	24%	28%	NA	NA		
1,600	17%	22%	26%	30%	34%	NA		
1,800	18%	24%	28%	33%	37%	40%		
2,000	20%	26%	31%	35%	39%	43%		
2,200	23%	29%	34%	39%	43%	47%		
2,400	26%	32%	38%	43%	47%	51%		

betterbuildingssolutioncenter.energy.gov

ORNL ID# 109863



Process Cooling System Info Card

Top 5 Energy Conservation Measures

- 1. Convert chilled water systems from constant to variable flow by replacing 3-way with 2-way control valves and installing VFDs on distribution pumps
- 2. Convert condensing water systems from constant to variable flow by installing VFDs on condensing water pumps
- 3. Convert cooling tower fans from 1-speed or 2-speed to variable speed by installing VFDs
- 4. Reset chilled water supply temperature setpoints based on the process load
- 5. Reset condensing water entering temperature setpoints based on the ambient wet bulb temperature

Process Cooling Systems' Cost Comparison

Water Cooled Chiller Comparison							
Chiller Type	Capacity (1) Range (tons)	First Cost (2) Range (\$/ ton)	COP Range	IPLV Range (COP)			
Reciprocating/ Scroll	50-230 (400)	\$200-\$250	4.2-5.5	4.6-5.8			
Screw	70-400 (1250)	\$225–275	4.9-5.8	5.4-6.1			
Centrifugal	200–2000 (10,000)	\$180-\$300	5.8–7.1	6.5-7.9			
Single-effect Absorption	100-1700	\$300-\$450	0.60-0.70	0.63-0.77			
Double-effect Absorption	100-1700	\$300-\$550	0.92-1.20	1.04-1.30			
Engine Driven	100-3000 (10,000)	\$450-\$600	1.5-1.9	1.8-2.3			

⁽ACapabilities in parentheses are maximum sizes available (A) First cost includes allowance for contractor mark-ups

Courtesy of Energy Design Resources

betterbuildingssolutioncenter.energy.gov

ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Process Cooling System Info Card

Rules of Thumb

- 1°F increase of chilled water temperature improves the chiller efficiency by approximately 1.5%; 1°F decrease of condensing water temperature improves the chiller efficiency by approximately 1.5%
- Pump sizing: 2.0 2.4 GPM/ton for chilled water and 2.5 – 3.0 GPM/ton for condensing water
- Distribution pipe sizing: 10 ft/s water velocity or 4 ft w.c. pressure loss per 100 ft

Unit Conversion

- kW/ton = 12/EER; EER = COP x 3.413; kW/ton = 12/(COP x 3.413)
- 1 refrigeration ton = 12,000 Btu/hr
 1 cooling tower ton = 15,000 Btu/hr
- 3. 1 HP =745.7 W; 1 ft w.c. = 0.433 psi
- 4. $C = (F 32) \times (5/9)$

Integrated Partial Load Value (IPLV) Equation

10111	1	
IPLV =	1% . 42% . 45% . 12%	
	\overline{A} + \overline{B} + \overline{C} + \overline{D}	

Where: A = kW/ton @ 100% load B = kW/ton @ 75% load C = kW/ton @ 50% load D = kW/ton @ 25% load

Cooling Tower Water Consumption

Cooling Tower Usage (Million Gallons/Year)

Chiller	Cycles of Concentration						
Tonnage	3	5	7	8			
100	2.0	1.7	1.6	1.5			
200	4.0	3.4	3.1	3.1			
400	8.0	6.7	6.3	6.1			
600	12.1	10.0	9.4	9.2			
800	16.1	13.4	12.5	12.3			
1000	20.1	16.8	15.6	15.3			
2000	40.2	33.5	31.2	30.6			
3000	60.3	50.3	46.9	46.0			
4000	80.4	67.0	62.6	61.3			
5000	100.5	83.8	78.2	76.6			

Resources

- 1. ASHRAE Handbook: HVAC Systems and Equipment by ASHRAE
- 2. Chilled Water Plant Design Guide by Energy Design Resources

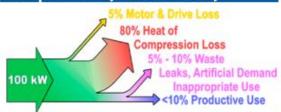
betterbuildingssolutioncenter.energy.gov

ORNL ID# 109862

Compressed Air System Info Card

Top 5 Energy Conservation Measures

- 1. Eliminate inappropriate uses of compressed air
- 2. Stabilize system pressure
- 3. Lower pressure requirements of end uses
- 4. Minimize compressed air leaks
- Provide compressed air of appropriate quality for manufacturing processes


1 hp air motor = 7-8 hp of electrical power

- 30 scfm @ 90 psig is required by the air motor
- 7–8 hp electrical power required for this
- Annual energy cost \$1,164 (air motor) vs. \$194 (electric motor)
- * 4,000 hrs/yr; \$0.05/kWh

- Input Power to Electric Motor
- Shaft Power Required by Compressor
 Power Losses and Useful Work

Compressed Air System's Inefficiency

Rules of Thumb

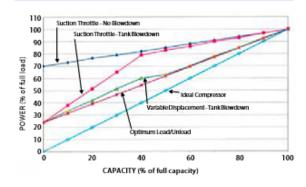
- Lowering compressor pressure setpoints by 2 PSIG will result in ~1% savings
- Lowering compressor inlet air temperature by 10°F will result in ~2% savings.

Resources

- Improving Compressed Air System Performance: A Sourcebook for Industry by US Department of Energy
- AirMaster+ and Logtool by US DOE

betterbuildingssolutioncenter.energy.gov

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY


Compressed Air System Info Card

Annual Air Leaks Costs

*Based on \$0.075/kWh

Pressure (Psig)	Equivalent Orifice Diameter (in.)							
	1/64	1/32	1/16	1/8	1/4	3/8		
70	\$34	\$137	\$551	\$2,202	\$8,799	\$19,844		
80	\$38	\$149	\$620	\$2,455	\$9,827	\$22,138		
90	\$43	\$173	\$676	\$2,732	\$10,880	\$24,433		
100	\$47	\$183	\$746	\$2,983	\$11,932	\$26,845		
125	\$57	\$229	\$906	\$3,625	\$14,451	\$32,581		

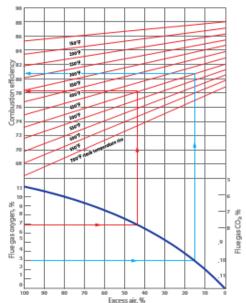
Control Strategies

Potential Inappropriate Uses

Potential Inappropriate Uses	Alternatives
Clean up, Drying, Process Cooling	Low pressure blowers, Electric fans, Brooms
Sparging	Blowers and mixers
Aspirating, Atomizing	Low pressure blowers
Vacuum generators	Dedicated vacuum pumps
Air operated diaphragm pumps/motors	Electric pumps with proper regulators
Air motors	Electric motors
Idle equipment	Install air stop valves at the inlet
Abandoned equipment	Disconnect air supply

betterbuildingssolutioncenter.energy.gov

ORNL ID# 109859



Steam System Info Card

Top 10 Energy Conservation Measures

- 1. Inspect and repair steam traps
- Insulate steam distribution and condensate return lines and cover heated open vessels
- 3. Install condensing economizers
- 4. Use feedwater economizers for waste heat recovery
- 5. Minimize boiler blowdown
- 6. Recover heat from boiler blowdown
- Replace pressure-reducing valves with backpressure turbo-generators
- 8. Use low-grade waste steam to power absorption chillers
- 9. Upgrade boilers with energy-efficient burners
- Optimize the air-to-fuel ratio to improve combustion efficiency

Natural Gas Combustion Efficiency Curve

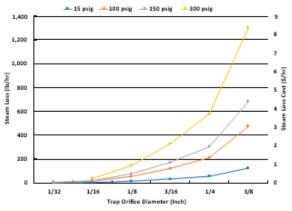
Source: Energy Management Handbook, 4th Edition, Fairmont Press 2001


Rules of Thumb

- Every 40°F increase in the combustion air temperature improves efficiency by roughly 1%
- Every 40°F increase in stack temperature results roughly 1% efficiency loss

betterbuildingssolutioncenter.energy.gov

ENERGY


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Steam System Info Card

Leaking Steam Trap Discharge Rate and Cost

*Based on Natural Gas unit rate of \$0.5/therm/and boiler efficiency of 80%.

Heat Loss Per 100 Feet of Uninsulated Steam Line

**Based on Natural Gas unit rate of \$0.5/therm and boiler efficiency of 80% and 8,760 operating hours per year.

Resources

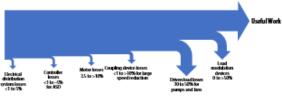
- 1. Steam System Modeler Tool (SSMT) by US DOE
- 2. Steam System Scoping Tool (SSST) by US DOE
- 3. Insulation tool 3EPlus by Insulation Institute
- Improving Steam System Performance: A Sourcebook for Industry by US DOE
- 5. Steam System Survey Guide by US DOE
- 6. Steam Tip Sheets by US DOE

betterbuildingssolutioncenter.energy.gov

ORNL ID# 109866

Motor System Info Card

Top 5 Energy Conservation Measures


- 1. Turn off motors when not in use
- 2. Replace standard V-belts with notched or synchronous belt drives
- Replace standard efficient motors with energy efficient/premium efficient motors
- 4. Mitigate voltage unbalance
- 5. Improve power factor

Annual Energy Savings for Premium vs. Standard Efficiency Motors

Motor Horse- power	Standard	Efficiency	Premium	Annual	
	Motor Efficiency	Annual Energy Cost	Motor Efficiency	Annual Energy Cost	Cost Savings
10	86.7	\$6,884	91.7	\$6,508	\$375
25	89.9	\$16,596	93.6	\$15,940	\$656
50	91.6	\$32,576	94.5	\$31,577	\$1,000
100	92.2	\$64,729	95.4	\$62,558	\$2,171
200	93.3	\$127,931	96.2	\$124,075	\$3,857

Note: Based on an 1,800 RPM TEFC motor in operation 8,000 hours per year (hts/year) at 75% load at an electrical rate of \$0.1/kWh.

Typical Motor System Losses

Rules of Thumb: Replace Instead of Rewind If..

- Motors are standard and easy to purchase
- The process down time will be significantly reduced
- Motor power is less than 50 hp
- The cost of rewinding exceeds 60% of the price of a new motor

Motor Formulas

 $P(kW, estimated) = \frac{Rated Horsepower \times 0.746 \times \% Motor Load}{Motor Efficiency}$

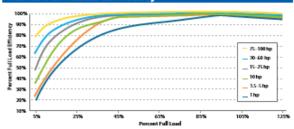
 $P(kW, measured, 3-phase) = \frac{Amp \times Vol \times \sqrt{3} \times Power \ Factor}{1000}$

 $Horsepower = \frac{Torque(ft \cdot lb) \times RPM}{5252}$

Synchronous Speed = 120xFrequency (Hz) Number of Poles

betterbuildingssolutioncenter.energy.gov

Motor System Info Card


Unit Conversions

 $1 hp = 745.5 W = 550 lb \cdot ft/s$

1 kW = 1.341 hp = 738 lb • ft/s

Adjustable Speed Drive Part-Load Efficiency								
Variable Drive hp Rating	Efficiency (%)							
	Load, Percent of Drive Rated Power Output							
	12.5	25	45	50	75	100		
5	80	88	91	92	94	95		
10	83	90	93	94	95	96		
50	86	92	95	95	96	97		
100	89	94	95	96	97	97		
200	81	95	96	96	97	97		

Motor Part Load Efficiency

Shaft Alignment Tolerances for Direct-Coupled Shafts Angular Misalignment Parallel Offset (mils) Short Flex Couplings (mils per inch) Motor Speed (RPM) Spacer Couplings Excellent Acceptable Excellent Acceptable 900 3.0 6.0 1.2 2.0 1,200 2.5 4.0 0.9 1.5 1,800 2.0 3.0 0.6 1.0 3,600 1.0 1.5 0.3 0.5

Source: Alan Luedeking, Ludeca Inc. "Shaft versus Foot Alignment Tolerances: A Critique of the Various Approaches," 2008.

Resources

- Improving Motor and Drive System Performance:
 A Sourcebook for Industry by US Department of Energy
- 2. Motor Tip Sheets by US Department of Energy
- Premium Efficiency Motor Selection and Application Guide-A Handbook for Industry. Washington D.C, US Department of Energy
- EASA Standard AR100-2015: Recommended practice for the repair of rotating electrical apparatus by Electrical Apparatus Service Association, Inc.

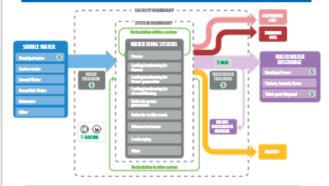
betterbuildingssolutioncenter.energy.gov

Water System Info Card

Water Saving Opportunities

Manufacturing Processes

- Install timers/sensors to automatically shut off water flow when water is not required
- Set equipment to the minimum flow rates required by processes and recommended by manufacturers
- 3. Reuse water from other parts/processes of the facilities


Cooling Water Systems

- 1. Eliminate water overflowing from cooling towerbasins
- 2. Set the ball float valves to the correct size
- 3. Install flowmeters and conductivity sensors on blowdown lines
- 4. Operate blowdown operated in continuous mode
- Eliminate once-through water cooling by using closed loop chilled water

Steam Systems

- 1. Check and replace steam traps regularly
- 2. Install boiler blowdown flash tank to recover flash steam
- Install conductivity sensors on boilers to automatically control surface blowdown

Water Flow Diagram with True Cost Components and System Water Balance

Rules of Thumb

- In cooling towers, 1% of the water recirculation rate must be evaporated for every ΔT of 10 °F.
- A boiler making 10,000 lb/hr of steam requires 20 GPM of feedwater.
- Steam blowdown rates typically range from 4% to 8% of boiler feedwater.
- ~15% to 30% of steam traps may be failed in steam systems that are only maintained every 3 to 5 years.

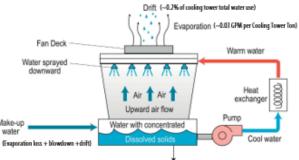
betterbuildingssolutioncenter.energy.gov

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Water System Info Card

Formula and Unit Conversions

 $Cooling\ tower\ blowdown\ water = \frac{Evaporation\ Loss}{Cycle\ of Concentration-1}$


 $Cycle \ of \ Concentration = \frac{\textit{Makeup Water}}{\textit{Blowdown}}$

1 gal = 3.785 liter = 0.134 ft3 = 0.00379 m3

 $1 \text{ gpm} = 0.063 \text{ l/s} = 0.23 \text{ m}^3/\text{hr}$

1 gal water = 8.35 lbs

Cooling Tower Water Loss

Blowdown (~0.006 GPM per Cooling Tower Ton @ 6 Cycles of Concentration)

Cooing Tower Annual Water Usage for Different Sized Chillers at Varying Cycles of Concentration

Cooling Tower Usage (Million Gallons/Year)

Chiller Tonnage	Cycles of Concentration						
(Nameplate)	3	4	5	6	7	8	
100	2	1.8	1.7	1.6	1.6	1.5	
200	4	3.6	3.4	3.2	3.1	3.1	
400	8	7.2	6.7	6.4	6.3	6.1	
500	10	8.9	8.4	8	7.8	7.7	
600	12.1	10.7	10	9.7	9.4	9.2	
800	16.1	14.3	13.4	12.9	12.5	12.3	
1000	20.1	17.9	16.8	16.1	15.6	15.3	

^{*}Assuming that the annual operation is 8760 hours.

Resources

- DOE Plant Water Profiler (PWP) tool. https://www.energy.gov/eere/amo/software-tools
- Guideline for Estimating Unmetered Industrial Water Use by US Department of Energy
- Byers, William, Industrial Water Management: A Systems Approach, Wiley-AIChE, 2003

betterbuildingssolutioncenter.energy.gov

APPENDIX I. OPPORTUNITY SHEETS

	Energy Treasure Hunt - Pl	ant's Cost Information			
Instructions:					
Please respond to the following qu	Please respond to the following questions on Plant's cost information				
Input values in cells colored in green					
Choose appropriately from the cells colored in pink					
Please DO NOT insert any value in cells colored in grey					

Plant Name:						
Scope of Energy Treasure Hu	Scope of Energy Treasure Hunt:					
Instructions:	Check boxes for items that are to be considered within the scope of the treasure hunt event. Leave check box blank if it does not apply.					
	 Please check boxes associated with steam/compressed air cost only if user is buying them from a utility or a third- party enterprise. DO NOT check the boxes if these are generated onsite using boilers/air compressors, etc. 					
Electricity	□ Yes		Other Fuels	□ Yes		
Natural Gas	□ Yes		Water Savings	□ Yes		
Steam (only if purchased)	□ Yes		Waste Water	□ Yes		
Compressed Air (only if purchased)	□ Yes		Emissions	□ Yes		

Unit Cost of Primary Energy Consumed:					
Please provide unit costs for different energy types used in your plant.					
 Please provide steam/compressed air cost only if user is buying steam from a utility or a third-party enterprise. Do not provide costs if these are generated onsite using boilers/air compressors. 					
Energy Type Unit Price Unit					
	Please provide unit costs for different energy typ Please provide steam/compressed air cost only i if these are generated onsite using boilers/air comp				

Other Metrics:					
Instructions:	Please provide unit costs for the items listed.				
	 The default value for CO2 emissions is 1.552 lb 				
Energy Type	Unit Price Unit				

							Plant:		0
,و	Title:						Business Unit:		
lnfo	Process /						Originator:		
	Equipment:						Date:		
Description	Description:								
·#		Current Situa	ation (Before En	ergy Treasure Hunt)		Projected S	ituation (After Ei	nergy Treasure H	unt)
Desc	Annual Ope	Hours/Day Days/Mon Months	, [mber of Units Eg. Number of leaks, Number of equipment to be turned off etc.	Annua	l Operating Hours Hours/D Days/Mo Months	eav onth	of equipme etc.	rrofleaks, Number ent to be turned off
田田				Use Before TH (Energy units/yr)	P	* This sec ergy Use After TH (I			not used in calculations.
Щ	Ener	gy units	Implementatio		\$/unit	ergy Use After 1 ft (1		nnual Savings	gs (Energy Units/yr)
	Engineering Ser	nices:	imprementatio	10031	\$ -	Electricity	\$	innuar bavings	
	Material:	\$	-	•	\$ -	Gas	\$		-
	Labor: Contract			•	\$ -	Compressed Air	\$		-
l gi	Labor: In House				\$ -	Other Fuel	\$		-
Cost/Savings	Other:	\$	-	Cost Description:	\$ -	Steam	\$		-
S	Other:	\$	-						
st	Other:	\$	-		\$ -	Water	\$		-
ပိ	Other: Other:	\$	-		\$ -	WWT	\$		-
	Other:)	-		<u> </u>	Other Savings			
	Total:	\$	_		1	Other Savings Total:	\$		
		3					back Period (yrs.)	:	

APPENDIX J. CALCULATORS

Compressed Air Reduction - Energy Treasure Hunt Calculator

The calculator is designed to be used as part of the Energy Treasure Hunt event to quantify the energy savings associated with reducing compressed air usage.

This calculator can be used to calculate the energy savings of typical energy savings opportunities like:

- . Turn off compressed air to a production line/machine during non-production.
- Reduce compressed air going into a production line/machine.
- . Eliminating inappropriate use of compressed air
- Use Engineered Nozzles in place of open blow off etc.

Calculation Steps - Determining annual energy use of a piece of equipment is a three-step process:

- Step 1: Determine operational time each year
- Step 2: Determine the rate of energy use
- Step 3: Multiply operational time by energy rate to determine consumption.

Enter items into the cells in Green, choose from cells in Pink and the Grey Cell will be calculated from your entries.

Step 1 - Determine the Operation time Before Energy Treasure Hunt After Energy Treasure Hunt Seconds/minute Seconds Seconds/minute Seconds Min/cycle Minutes or cycles/hour Min/Cycle Minutes or cycles/hour hr. Hours/day hr. Hours/day Days/month Day Day Days/month Months/year Month Month Months/year Operation Time Min/yr. Min/yr. 0 Operation Time Step 2 - Determine Compressed Air Flow Identify the method to be used: Compressed air consumption can be determined by several different means. The calculator sheets provide three options to determine consumption. The determination means will always start with the most accurate and end with the least accurate that is acceptable. Getting the flow measurement straight from a calibrated air flow meter reading. This is the best way to a. Compressed Air Flow Meter measure compressed air consumption. The bag method estimates the air flow using a trash bag by counting the time it takes to fill it. This is the b. Bag Method second most accurate means of measuring compressed air consumption. Estimation of air flow using the pressure at the point of use and the diameter of the orifice. This is the c. Orifice/ Pressure Method least accurate method permissible for determining compressed air use. The user must know the air pressure at the point of use for this to be accurate. d. Off-sheet/Other Method Choose this option if you are using a different method to find the compressed air use Choose Method of Measurement Step 3 - Total Energy Savings Choose Output Metric Note: To get the results in units consistent with the "Opportunity Sheet", Choose "Electricity (kWh)" lifthe compressed air is generated onsite using air compressors, choose "Compressed air (kSCF)" only if compressed air is bought from outside the facility

Compressed Air - System Pressure Reduction Savings

The calculator is designed to be used as part of the Energy Treasure Hunt event to quantify the energy savings associated with reducing compressed air system pressure.

The benefit of lowering system pressure is two-fold:

- 1.) Reducing the pressure lowers the work done by the compressor and hence lesser electricity is drawn.
- 2.) Reducing the pressure also lowers the amount of air delivered to plant and thus cuts down on the air lost in the form of artificial demand and air leaks.

This calculator only calculates the electricity saved at the compressor by reducing system pressure.

Calculation Steps - Determining annual energy use of a piece of equipment is a three-step process:

- Step 1: Determine operational time each year
- Step 2: Define Compressor Energy and Pressure
- Step 3: Calculate savings at the compressors

Step 1 - Determine the Operation time	
Before Energy Treasure Hunt	After Energy Treasure Hunt Hours/day hr. Days/month Day Months/year Month Operation Time 0 Hrs./yr.
Step 2 - Define Compressor Energy and Pressure	
Current Situation	Projected Situation
<u>Data Item Value Unit</u>	<u>Data Item</u> <u>Value</u> <u>Unit</u>
Enter baseline KW demand. kW Enter baseline pressure psig	Enter proposed pressure psig
Total Annual Consumption - kWh	Total Annual Consumption - kWh
Step 3 - Total Energy Savings	
Choose Output Metric	
Note: To get the results in units consistent with the "Opportunity Sheet", Choose "Electricity (kWh; (kSCF)" only if compressed air is bought from outside the facility.	y" if the compressed air is generated onsite using air compressors, choose "Compressed air

Compressed Air - Leak Survey

The calculator is designed to be used as part of the Energy Treasure Hunt event to quantity the <u>energy savings associated with reducing compressed air leaks</u>

Calculation Steps - Determining annual energy use of a piece of equipment is a three-step process:

Step 1: Define the annual hours and the operating condition

13

14

15

None

None

None

None

None

None

Step 2: Determine the rate of leak using one of the three methods available

Step 3: Multiply operational time by leak rate to determine annual loss in terms of flow or energy.

Enter items into the cells in pink; choose from cells in blue and the Grey Cell will be calculated from your entries.

Step 1 - Define the operation time and condition Seconds/minute Seconds Compressed Air Temperature 14.7 Minutes or cycles/hour Min/cycle Atmospheric Pressure psia Discharge coefficient 1 Hours/day Days/month Day Months/year (//onth 0 Operation Time Hrs./yr. Step 2 - Determine Compressed Air loss through leak Compressed air loss can be determined by several different means. The calculator sheets provide four options to determine loss, to be chosen in column 4 of the survey table The most high-level way to determine the leak rate is to estimate it based on the visual and audible clues. The criteria and the default leak rate for this method are given below. The user can change this as required. Minimal sft³/min Feel but cannot hear in quiet environment a. Estimate sft³/min Small Feel and hear in quiet environment 8.0 Medium Feel and hear in moderate noise 3.0 sft³/min Large Feel and hear in high noise 5.0 sft³/min Feel and hear at great distance 10.0 sft³/min Severe The decibels method is used when an Ultrasonic probe is used to scan for leaks. Use the dB vs CFM chart that comes along with b. Decibels Method the specific leak detector to estimate loss. b. Bag Method The bag method estimates the air loss using a trash bag by counting the time it takes to fill it. Estimation of air loss using the pressure at the point of use and the diameter of the orifice. The user must know the air c. Orifice/ Pressure Method pressure at the point of use for this to be accurate. Leak Survey - Table Leak Sound Leak Description (What is Identification Rate Intensity Rate Number Location Calculate Leak Leaking?) Туре Estimate Estimate [sft³/min] [dB] [kscf/yr.] 1 None None * 0.00 None . None 0.00 Ŧ None None 0.00 • 4 None None 0.00 None None 0.00 6 None Ŧ None 0.00 • None None 0.00 8 None None 0.00 9 None None * 0.00 * None 0.00 10 None • 11 None None 0.00 12 None None * 0.00

.

*

0.00

0.00

0.00

16	None	None	*			0.00		0
17	None	None	*			0.00		0
18	None	None	*			0.00		0
19	None	None				0.00		0
20	None	None	*			0.00		0
Total Leak Rate					cfm -	0.00	kcf / yr	0
Step 3 - T	Step 3 - Total Energy Savings							
Choose Output Metric								

Note: To get the results in units consistent with the "Opportunity Sheet", Choose "Electricity (WMh)" if the compressed air is generated oreite using air compressers, choose "Compressed air (ASCF)" only if compressed air is tought from curside the facility.

Electricity Reduction - Energy Treasure Hunt Calculator

The calculator is designed to be used as part of the Energy Treasure Hunt event to quantify the <u>energy savings associated with</u> reducing electricity usage.

This calculator can be used to calculate the energy savings of typical energy savings opportunities like:

- Reduce the operation time of equipment which uses electricity.
- Reduce the size/load of the equipment which uses electricity.
- · Turn off equipment that uses electricity
- Lower the frequency of a variable speed drive motor

Calculation Steps - Determining annual energy use of a piece of equipment is a three-step process:

- Step 1: Determine operational time each year
- Step 2: Determine the rate of energy use
- Step 3: Multiply operational time by energy rate to determine consumption.

Enter Items Into the cells in Green, choose from cells in Pink and the Grey Cell will be calculated from your entries.

Step 1 - Determine the Operation time Before Energy Treasure Hunt After Energy Treasure Hunt Seconds/minute Seconds/minute Seconds Seconds Minutes or cycles/hour Min/Cycle Minutes or cycles/hour Min/cycle Hours/day hr. Hours/day Days/month Day Days/month Day Months/year Month Months/year Month Operation Time hrs./yr. 0 0 Operation Time hrs./yr. Step 2 - Determine Electricity Consumption Identify the method to be used: Electricity consumption can be determined by several different methods. The calculator sheets provide three options to determine consumption. The methods are listed starting with the most accurate and end with the least accurate. The best way to measure electrical consumption is with a power meter. Manufacturer's data on a. Power Meter Method lights can be entered as if the measurements were done with a power meter. Multimeter measurements are the second most accurate means of measuring electrical b. Multimeter Reading consumption and are accurate for DC and for AC (When combined with the plant's uncorrected Motor nameplate data can provide a reasonable estimation of the energy that motors are c. Name Plate Data consuming but are not as accurate as a power meter. Nameplate data does not tell the userhow heavily loaded the motor is. d. Off-sheet/Other Method Choose this option if you are using a different method to find the compressed air use Choose Method of Measurement Step 3 - Total Energy Savings Values for Opportunity Sheet Electricity - Current Situation kWh Savings kWh 0 Electricity Used - Projected Situation kWh

Lighting Calculator

The calculator is designed to be used as part of the Energy Treasure Hunt event to quantify the energy savings associated with lighting opportunity

This calculator can be used to calculate the energy savings of typical energy savings opportunities like:

- · Reduce the operation time of lighting equipment.
- Reduce the number of the lighting fixtures.
- Turn off lights

Calculation Steps - Determining annual energy use of a piece of lighting equipment is a three-step process:

- Step 1: Determine operational time each year
- Step 2: Determine the electricity used per lighting fixture
- Step 3: Multiply operational time by electricity used to determine consumption.

Step 1 - Determine the Operation time							
Before Energy Tre Hoursklay Days/month Months/year Operation Time	hr. Day Month o hrs.Jyr.		After Energy Hoursiday Days/month Months/year Operation Time	hr. Day Month 0 hrs./yr.			
Step 2 - Defermine Electricity Consumptio	Step 2 - Determine Electricity Consumption per Lighting Fixture						
Current Situ	ation		Proposed Situation				
How would you like to input wattage?			How would you like to input wattage?				

Natural Gas Reduction - Energy Treasure Hunt Calculator

The calculator is designed to be used as a part of the Energy Treasure Hunt event to quantify the <u>energy savings associated with reducing natural gas.</u>

This calculator can be used to calculate the energy savings of typical energy savings opportunities like:

- · Reduce the operation time of equipment which uses natural gas.
- . Decrease the flow rate of the "fluid" being heated. (The most common "fluids" heated are water and air.)
- Turn off equipment that uses natural gas
- · Change set point to a lower temperature.

Calculation Steps - Determining annual energy use of a natural gas using piece of equipment is a four-step process:

- Step 1: Determine operational time each year
- Step 2: Determine the energy efficiency of the system
- Step 3: Determine the rate of energy use
- Step 4: Multiply operational time by energy rate to determine consumption.

Step 1 - Determine the Operation time					
Before Energy Tree Seconds/minute Minutes or cycles/hour Hours/day Days/month Months/year Operation Time	Seconds Afin/cycle hr. Day Afonth hrs.lyr.		After Energy Trea Seconds/minute Minutes or cycles/hour Hours/day Days/month Months/year Operation Time	Sec	nth
Step 2 - Determine the Natural Gae Sy Efficiency	Value Unit %		Efficiency	Value	Unit %
Step 2 - Determine Natural Gas Consumption Identify the method to be used: Natural Gas consumption can be determined by several different means. The calculator sheet provides three options to determine consumption. The determination means will always start with the most accurate and end with the least accurate that is acceptable.					
Flow Meter Method Mass Flow Method for Air	meter is measuring the time over which the measurement is made to correctly determine consumption. This method uses the mass flow of air heated by the natural gas to backtrack the natural gas consumption. The				
c. Mass flow Method for Water	This method uses the mass flow of water heated by the natural gas to backtrack the natural gas consumption. The mass flow of water can be determined either from a mass flow meter or using nameplate data. Using mass flow meter readings is much more accurate than the name plate readings. Mass flow calculations use ASHRAE accepted formulae to calculate consumption.				
d. Off-sheet/Other Method	Choose this option if you are using	a different method to fin	nd the natural gas use		
Choose Method of Measurement					
Step 3 - Total Energy Savings					
Values for Opportunity Sheet Electricity - Current Situation Electricity Used - Projected Situation 0.00 MMBTU Savinos 0.00 MMBTU					

Insulation - Energy Treasure Hunt Calculator The calculator is designed to be used as a part of the Energy Treasure Hunt event to quantify the energy savings associated with insulating hot piece and Calculation Steps. Step 1: Determine operational time each year Step 2: Determine the energy efficiency of the system Step 3: Determine the rate of energy use

Step 1 - Determine the Operation time	Step 1 - Determine the Operation time					
Before Energy Treasure Hu	unt		After Energy Tr	easure Hunt		
Seconds/minute	Seconds		Seconds/minute		Seconds	
Minutes or cycles/hour	///in/cycle		Minutes or cycles/hour		f/lin/Cycle	
Hours/day	hr.		Hours/day		ñr.	
Days/month	Day		Days/month		Day	
Months/year	Month		Months/year		f/fanth	
Operation Time	0 hrs./yr.		Operation Time	0	hrs./yr.	
Step 2 - Determine the Natural Gas System Eff	ficiency					
Va.	alue Unit			Value	Unit	
			E#Feieners	72.02	96	
Efficiency	%		Efficiency		76	
Step 2 - Determine Natural Gas Consumption						
This calculator uses the temperature of the pipe/tank	heated by the natural gas to	backtrack the natural of	jas consumption.			
Users can use either the surface temperature or the i	nternal fluid temperature of t	he bare pipe/tank as the	e input variable to estimate	the energy savings within	the	
acceptable levels of error.						
Choose if the insulation is for a pipe or a tank						
Step 3 - Total Energy Savings						
step s - rotal Energy savings						
Values for Opportunity Sheet					_	
Natural Gas - Current	Situation	MMBtu			ı	
			Savinga		MMBtu	
Natural Gas - Projected	Situation	MMBtu	1			
					ı	

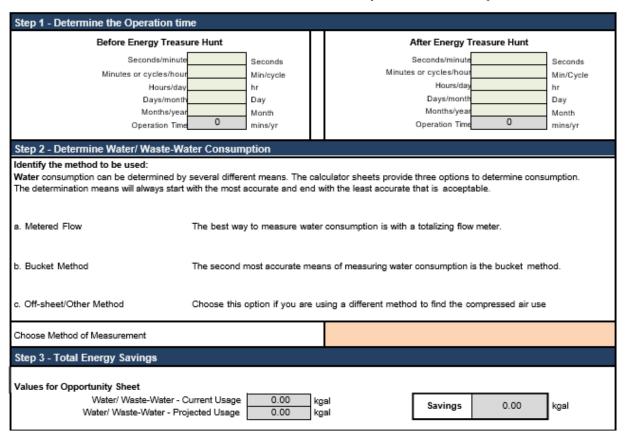
Steam Reduction - Energy Treasure Hunt Calculator The calculator is designed to be used as a part of the Energy Treasure Hunt event to quantity the energy savings associated with reducting steam. This calculator can be used to calculate the energy savings of trained energy savings opportunities like: Reduce the operation time of equipment which uses steam. Decrease the flow rate of the "fluid" being heated. (The most common "fluids" heated are water and air.) Reduce the operational hours of the boiler house Change set point to a lower temperature. Calculation Steps - Determining annual energy use of a piece of equipment is a four-step process: Step 1: Determine operational time each year Step 2: Determine the energy efficiency of the system Step 3: Determine the rate of energy use

Enter items into the pells in Green, phoose from cells in Pink and the Grey Cell will be palculated from your entries.

Step 4: Multiply operational time by energy rate to determine consumption.

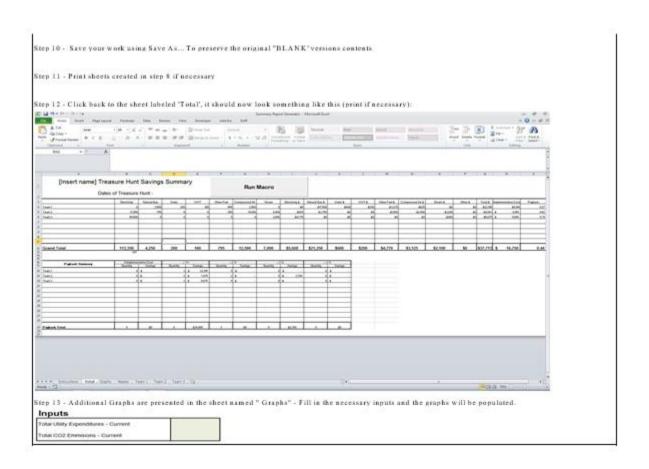
			is and the drey deli will be delicated from your entities.		
Step 1 - Determine the Operation time	+				
Before Energy Trea	sure Hunt		After Energy Treasure Hunt		
Secondshrinute Minutes or cycles/hour Hours/day Days/month Months/year Operation Time	Afinityide hr Dey Afonth		Seconds/minute Seconds Minutes or cycles/hour Minutes or cycles/hour Minutes Hoursiday for Days/month Day Months/year Month Operation Time 0 hrs/yr		
Step 2 - Determine the Steam System	Efficiency				
Efficiency	Value Unit		Value Unit Efficiency 96		
Step 3 - Determine Steam Consumption	on				
Identify the method to be used: Steam consumption can be determined by several different means. The calculator sheet provides three options to determine consumption. The determination means will always start with the most accurate and end with the least accurate that is acceptable.					
a. Flow Meter Method			sumption is with a flow meter. The user must understand the units the meter e-measurement is made to correctly determine consumption.		
b. Mass Flow Method for Air	of air can be determined either fro	om i	ir heated by the steam to back track the steam consumption. The mass flow a mass flow meter or using namepiate data. Using mass flow meter readings me plate readings. Mass flow calculations use ASHRAE accepted formulae to		
c. Mass flow Method for Water	This method uses the mass flow of water heated by the steam to backtrack the steam consumption. The mass flow Method for Water Mass flow Method for Water Mass flow of water can be determined either from a mass flow meter or using nameplate data. Using mass flow meter readings is much more accurate than the name plate readings. Mass flow calculations use ASHRAE accepted formulae to calculate consumption.				
d. Off-sheet/Other Method	Choose this option if you are using	ng a	a different method to find the natural gas use		
Choose Method of Measurement					
Step 4 - Total Energy Savings					
Choose Output		\Box			
Note: To get the results in units consistent with the "Opport outside the fiscility.	unity Sheet", Choose "Natural GeefFuel Oil (MM	BTU) [*] if the steam is generated onsite using boilers, choose "Steam (kib) <u>only</u> if steam is bought from		

Water/ Waste-Water Reduction - Energy Treasure Hunt Calculator


The calculator is designed to be used as part of the Energy Treasure Hunt event to quantify the <u>water or waste-water savings.</u>

This calculator can be used to calculate the energy savings of typical energy savings opportunities like:

- · Reduce the operation time of equipment which uses water
- · Recycle the water being used
- Engineer rinses and washers


Calculation Steps - Determining annual energy use of a piece of equipment is a three-step process:

- Step 1: Determine operational time each year
- Step 2: Determine the rate of water use
- Step 3: Multiply operational time by water use rate to determine consumption.

APPENDIX K. SUMMARY REPORT

Automatic Summary Report Generator - Instructions NOTE This generator requires that you use TH Opportunity Sheet's general format, it will not work if you deleted any rows or columns in the Opportunity sheet. This workbook uses macros. To Enable Macros: Tools->Macros->Security...-> Choose Low or Medium (May also be done by Allowing 'Macros when opening Excel)) If your Network Administrator has Disabled Macros, you cannot take advantage of this tool. You can still use the format if you wish to manually generate the report. All worksheets are protected to preserve formulas & general page layout. If you need to make a change Tools-Protection...->Unprotect Sheet (password "energy") will unprotect any individual sheet. Tools-Protection...->Protect Sheet (password "energy" two times) will re-protect any individual sheet. PLEASE DO NOT ADD OR DELETE ROWS OR COLUNNS on any of the sheets. Generating the Summary Report - Steps Step 1 - Begin by Organizing your detail sheets into a sub-folder or sub-folders broken down by team/ facilities/ process etc. Note: Please provide a brief & descriptive folder name (E.g. Production Line 1', 'West Facility, etc.), folder name must not be longer than 31 Characters!! Each folder must not contain more than 30 opportunity sheets! Create separate folders if you exceed 30. Similarly, there cannot be more than 8 Folders. The worksheet can be modified but may require changes imbedded VBA macro. Step 2 - Copy this file Blank Summary Report Generator.xlsm to the directory containing the sub folders created in step #1 Note - The directory must ONLY contain sub folders with opportunity sheets of the Master format Step 3 - Your directory setup should look something like this (example below shows two plants): E Desittop Recent Place Dropbox (OR This file Folder containing Team 2's Opportunity sheets Folder containing Team 1's Opportunity sheets Step 4 - Click on sheet labeled 'Total' next to this instructions sheet: H 4 > H Instructions Total Graphs Master Note - Ignore the sheet named 'Master' it will be copied by the macro, it CAN NOT be hidden Step 5 - Type in Plant Name or Company Name (Cell A1) & Treasure Hunt Date (Cell A2) Step 6 - Save and Close all Opportunity Sheets currently open. Step 7 - Click 'Run Macro Button' [Insert name] Treasure Hunt Savings Summary Run Macro Dates of Treasure Hunt -Electricity Natural Sea Water WINT Other Fuel Compressed Air Steam Electricity S Nat Step 8 - Be patient, the macro will open every Opportunity Sheet in every folder to copy the information, the following will appear when the macro has finished: Step 9 - You will notice that the macro created a new Excel Sheet with a summary for each directory & titled them accordingly. H + > H Instructions / Total / Graphs / Master / Team 1 / Team 2 | Team 3 / 12 / Note - The last summary sheet in the workbook will be selected.

										1									
[Insert name] Treasure Hunt Savings Summary					Dates of Treasure Hunt -														
Teams	Electricity Savings	Natural Gas Savings	Water Savings	Waste Water Savings	Other Fuel Savings	Compressed Air Savings	Steam Savings	Electricity Cost Savings	Natural Gas Cost Savings		Waste Water Cost Savings	Other Fuel Cost Savings	Compressed Air Cost Savings	Steam Cost Savings	Other Cost Savings	Total Cost Savings	Implementation Cost	Payback	CO2 Red
																			_
Grand Total	0																		_
		0		0	0	0			50	\$0	0.2			5.0			S .		0
	0	0	0	0	0	0	0	\$0	\$0	\$0	\$0	02	\$0	\$0	\$0	\$0	S -		0
			0				0				\$0	\$0	\$0	\$0	\$0	\$0	\$ -		0
Payback Summery	0 Impleme	ntation Cost	0	Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	SO	\$0	\$0	\$0	\$ -		0
			Quantity				Quantity				\$0	\$0	50	50	\$0	\$0	\$ -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	50	\$0	\$0	\$0	š -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	50	50	\$0	\$0	š -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	\$0	50	\$0	\$0	š -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	\$0	50	\$0	\$0	s -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	So	50	50	\$0	\$ -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	SO	50	50	\$0	\$ -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	SO	50	50	\$0	\$ -		0
	0 Impleme	ntation Cost		Yr		2 Yr		3 Yr	>3	Ye	\$0	\$0	SO	\$8	50	\$0	\$ -		0

Inputs	
Total Utility Expenditures - Current	
Total CO2 Entiriors Council	

puts				
Utility Expenditures S0	Identified Opportunities Number of State Number of State	of Opportunities Payback 0 S0 0 S0 0 S0 0 S0	CO2 Emissions Current CO2 Emissions Emission Savings Projected CO2 Emissions Percent Emission Savings	0 0
Utility Expenditures Current Utility Cost, \$0 Spending Reduction	Total Percent Cost Savings Treasure Hunt savings, \$0	Current CO2 Emissions, 0 CO2 Reduction	CO2 Emissions Emission Savings, 0	
Identified Opportunities - by Paybact	\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	Cost Savings -	Grouped by Payback Period of the Op	pportunity
■<1Year	50 50 50	<1 Year	<2Years <3Years	>3 Years

Opportunity	Electricity Savings	Natural Gas Savings	Water Savings	Waste Water Savings	Other Fuel Savings	Compressed Air Savings	Steam Savings	Electricity Cost Savings	Natura1Gas Cos Savings	Water Cost Savings	Waste Water Cost Savings	Other Fuel Cost Savings	Compressed Air Cost Savings	Steam Cost Savings	Other Cost Savings	Total Cost Savings	Implementation Cost	Payback	CO2 Reduction
								s -	s .	s -	S -	s -			s -	s -	5 -		0
								s -	s .	s -	s .	s -			s .	s -	s -		0
								S -	s .	s .	s .	S -			s .	s .	s -		0
								S -	s .	S -	S -	S -			S -	S -	\$ -		0
								s -	s -	s -	s -	s -			s -	s -	s -		0
								s -	s .	s -	s .	s -			s .	s -	s -		0
								S -	s .	S -	S .	S -			s .	S .	S -		0
								S -	s .	s .	S -	S -			s .	S -	S -		0
								s -	s .	S -	S -	S -			s -	s -	S -		0
<u> </u>								s -	s .	s -	s -	s -			s .	s -	s -		0
								S -	s .	s .	S .	S -			s .	S -	s -		0
								S -	S -	S -	S -	S -			S -	S -	\$ -		0
								s -	s -	S -	S -	S -			s -	s -	S -		0
								s -	s .	s -	s .	s -			s .	s .	s -		0
								s -	s .	s .	s .	S -			s .	s .	s -		0
								S -	S -	S -	S -	S -			S -	S -	\$ -		0
								S -	S -	S -	S -	S -			s -	S -	S -		0
								s -	s .	s -	s -	s -			s -	s -	s -		0
								s -	s .	s .	s .	S -			s .	s .	s -		0
								S -	s .	S -	S -	S -			s .	S -	S -		0
								S -	s .	S -	S -	S -			s -	s -	s -		0
								s -	s .	s -	s -	s -			s -	s -	5 -		0
								s -	s .	s .	s .	s -			s .	s .	S -		0
								S -	s .	s .	S .	S -			s .	s .	S -		0
								S -	s .	S -	S -	S -			s -	S -	S -		0
								s -	s -	s -	s -	s -			\$ -	s -	s -		0
<u> </u>								s -	s .	s .	s .	S -			s .	s .	s -		0
TOTAL	0	0	0	0	0	0	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	1	0

APPENDIX L. PROJECT IMPLEMENTATION TRACKER

Project Implementation Tracker - Instructions

·Copy the individual opportunities and associated metrics from the "Summary Report Generator" into the Master Sheet of the tracker.

You can use the "Project Tracking Sheet" to prioritize and track the progress of these projects (Input fields are color coded with Green)

Once an "Effort to Implement" is defined for each opportunity (Column D of the Project tracking sheet), the Project Prioritization Chart can be used as a visual aid to prioritize projects.

·Worksheet password - "energy"

Project Implementation Team							
Member 1							
Member 2							
Member 3							
Member 4							
Member 5							
Member 6							
Member 7							
Member 8							
*For drop down in Project Tracking Sheet							

Opportunity Electricity tevings Natural Oas Savings Water Savings Other Fuel Savings Officer Fuel Savings Officer Fuel Savings								
	Opportunity	Electricity Savings	Natural Gas Savings	Water Savings	Waste Water Savings	Other Fuel Savings	Compressed Air Savings	Steam Savings
TOTAL 0 0 0 0 0 0 0	TOTAL	0	0	0	0	0	0	0

Certificate of Completion - Better Plants Energy Treasure Hunt Exchange

Awarded to

(First Name, Last Name)

For completing a multi-day Energy Treasure Hunt Exchange Led by instructor (Instructor Name) at (Company name)'s (plant location – city, state), facility, (Month, Days, Year)

Presented by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy

(Instructor Signature)

APPENDIX N. TREASURE HUNT EVALUATION FORM TEMPLATE

Participant Name:

Evaluation Form

Energy Treasure Hunt

Evaluation Form (2 Pages Total) Training Site: Plant Name, City, State Date: (M/D/Y) - (M/D/Y)

Please Complete and return to your facilitator at the conclusion of this Energy Treasure Hunt Exchange

Job Title:

Organization/Address	:	Phone:	Email:					
Are you responsible for Corporate Level:	Are you responsible for managing energy consumption at your organization? YES / NO. If YES, please indicate Plant Level or Corporate Level:							
1.0 What is your prin	1.0 What is your principal business type? Mark only one.							
Manufacturer 3. Utility (Natural Gas) 5. Utility (Water or Other) 7. Other (Specify) State Agency - Energy Efficiency Program 4. Utility (Electricity) 6. Industrial Assessment Center (IAC)								
2.0 What industry or in	dustries do you work in (if ap	pplicable)? Check all that	apply.					
Primary Metals	5. Food Processing	9. Plastics and Rubber		13. Fu	miture and r	elatedpr	roducts	
Fabricated Metal Products	6. Paper Manufacturing	10. Computer and Electronic	Products	14. Ma	chinery Man	nufacturi	ng	
3. Chemicals	7. Textiles and Textile Products	11. Electrical Equipment, Ap Components	pliances and	15. Wa	ater/Wastew	ater Tre	atment	
Petroleum and Coal Products	8. Wood Products	12. Transportation Equipment Manufacturing 16. Other and Miscellaneous Manufacturing						
3.0 What is your ma	in reason for attendance?							
Acquire New S Other	kills 2. Interest in Topic Area	3. Required by Employer	4. Update Skil	ls 5. Jo	b-Related	Incenti	ve	
4.0 Participants feedba	ack on Treasure Hunt event:		Strongly Disagree		ither Agre or Disagre		Strongly Agree	
4.1 The event provided	information that I will apply to n	ту јов	1	2	3	4	5	
4.2 The event provided	adequate time for asking quest	ions & discussion.	1	2	3	4	5	
4.3 The facilitator made	clear the goals-objectives of th	e treasure hunt exchange	1	2	3	4	5	
-	ded helpful guidance throughou	-	1	2	3	4	5	
The facilitator provid 4.5 energy savings	led effective training on calculat	ting and documenting	1	2	3	4	5	
4.6 The facilitator respo	nded to the questions and issu	es effectively	1	2	3	4	5	
4.7 The handouts, calcu	ulators and opportunity sheets p	provided were easy to use	1	2	3	4	5	
4.8 The handouts, calcu	ulators provided were helpful		1	2	3	4	5	
4.9 The facilitator trained	d an employee of the host to fac	ilitate future treasure	1	2	3	4	5	

5.0 How effective was the workshop at providing information on:	Not Effect		Moderately Effective	E	Very ffective	Not Applicable
5.1 Identifying opportunities to save energy.	1	2	3	4	5	N/A
5.2 Quantifying energy savings associated with the identified opportunities	1	2	3	4	5	N/A
5.3 Documenting energy savings opportunities	1	2	3	4	5	N/A
5.4 Background on the various systems in the plant	1	2	3	4	5	N/A

6.0 Other Comments:

6.1	Would you recommend the treasure hunt exchange to other Plant(s) in your organization?	Yes / No					
6.2	What actions do you expect to take as a result of this training?						
6.3	As a result of this training, do you feel comfortable facilitating a similar event at other plants in your organization?	Yes / No					
6.4 \	8.4 What are your comments or suggestions for improving this treasure hunt exchange?						
:							
:							

Based on what I learned today, I will implement some energy savings Best Practices when I go back to my plant

	6	٥	<u>-</u>	0	
←	_	†	_		•
Strongly D	lisagree	Agree	Str	ongly A	gree

Comments: Best Practices, I intend to pursue in my plant are:

7.1	
7.2	
7.3	
7.4	
7.5	

8. Would you like to be contacted about the following DOE Technical Assistance programs:

Combined Heat and Power (CHP)? Yes / No Industrial Assessment Centers (IAC)? Yes / No Superior Energy Performance (SEP)? Yes / No 50001 Ready? Yes / No

Can DOE follow up with you in about a year to see what practices you have put in place as a result of this INPLT?
Yes / No

