

Simple Tools for Saving Energy -DOE's New Energy Assessment Software

Thomas Wenning, PE Oak Ridge National Laboratory

> AEE Monthly Webinar January 15, 2019

111/1/

Better Buildings, Better Plants

- What is Better Plants? A voluntary, publicprivate partnership program for manufacturers and industrial organizations
- Through Better Plants:
 - Partners set long-term efficiency goals
 - Receive technical assistance, networking platforms and national recognition
- Manufacturers have two opportunities to engage in Better Plants:
 - 1. Broader-based *Program* level
 - 2. Higher-level *Challenge*

Productivity + Cost Savings = Competitiveness

Better Plants Overview

Energy savings and program footprint continue to grow

Better Plants Snapshot Accomplishments Total Number of Partners 202 **Approximate Number of Plants** 3,000 Percent of U.S. Manufacturing Energy 12% Footprint **Reported Savings** Cumulative Energy Savings (TBtu) 1,056 Cumulative Cost Savings (Billions) \$5.3 Cumulative Avoided CO₂ Emissions (Million Metric Ton) 36 Average Annual Energy Intensity Improvement 3.2% Rate

Regional Distribution of Better Plants Facilities

52 goal achievers total, 9 this year!

Better Plants Challenge Partners

Why Partner with Better Plants?

Technical Assistance

- **Technical Account Manager:** navigate program and access resources
- In-Plant Trainings: expert instructors come to your plant
- Resources: Diagnostic & Software Tools/Industrial Assessment Centers/CHP TAPs/Water Savings Tools/Connection to National Labs
- Supply Chain Engagement: resources to advance supplier energy efficiency

National Recognition

- Awards for Goal Achievers
- Better Project/Better Practice Awards

Peer-to-Peer Networking Opportunities

Technical Assistance: Diagnostic Equipment Program

Field data is best for evaluating system performance

- Free of charge, including shipping
- Use equipment for one day, or up to four weeks
- Some technical assistance with selection and usage
- First come, first serve application

Advanced Technology Partnerships

Better Plants hosts events at National Laboratories to:

- **Tour** World-Class Facilities
- **View** Demonstrations of innovative technologies
- **Hear** from experts and Industry peers
- **Learn** about research partnerships
- **Network** with BP partners and researchers

Treasure Hunt Toolkit

PHASE

Preparation

- Agenda Template
- Pre-event Data Collection Form
- Plant Energy Profiler (PEPEx) Tool

PHASE

Event

- Kick off Presentation
- Handouts
- Energy Efficiency Calculators
- Opportunity Sheet and Summary Report Generator

Follow-up

PHASE

- Event Certificate Template
- Evaluation Form Template
- Project Implementation Tracker

Key Aspects:

- Empower and enable plant personnel
- Focus on low-cost/no-cost opportunities
- Observing the idle facility
- Facility employees conduct and have ownership of the ideas / opportunities

www.energy.gov/eere/amo/software-tools

Overview: Current DOE Software Tools

www.energy.gov/eere/amo/software-tools

Overview – DOE Software Tool History

- Technology and Vendor Agnostic tools to identify, quantify and validate energy saving opportunities
- Most DOE software tools were developed in the '90's
 - Operating Systems updated...DOE did not!
 - Many no longer work with current operating systems
- Original tools were developed with industry experts
- Highly valued by the manufacturing community including end-users, trade associations, utility programs, etc.
- Foundational tools to support other DOE activities
 - Energy Saving Assessments (ESAs)
 - Better Plants In-Plant Trainings
 - Industrial Assessment Centers
 - Case Studies & Fact Sheets

Software Changes, Systems Don't

High-level Plant Energy & Savings Profile

MEASUR Software Tools

- Modernize to Open-Source Software!
 - DOE will own and control code
 - Upgrading tool capabilities where feasible
 - Ex: Auto-Update capability (silent updates)
 - Government-wide Open-Source Software - <u>https://github.com/ORNL-AMO</u>
 - UT-Battelle Permissive License "Do whatever, but please provide attribution"
 - Desktop (Windows, Mac & Linux) & Web/Mobile
- Provide industry with technology/vendor agnostic analysis and evaluation tools

Bettei

- All system level software tools will be available to through one platform
- Includes system modelers and individual calculators for field validation
- Includes built-in guides and tutorials

Using MEASUR

Getting Started

- Start an assessment
- View Assessment Dashboard
- Use Properties & Equipment Calculators
- Change Settings, view tutorials, manage custom materials

Assessments Dashboard

View all your assessments in a folder-based organization

- Move, copy, import and export assessments
- Add/view facility information and folder-wide settings
 - Make pre-assessment screenings

Better Building

Generate rollup reports of several assessments

Starting an Assessment

- Choose a unique name for the folder
- Set Equipment type (Pump, Fan, Process Heater)
- Choose folder location

Or make a new folder

.s. department of

System Setup

Start with current equipment and operations - baseline

- Assessment Settings: Set units and basic assessment settings
- Assessment Specific Tabs
 - Data Entry for baseline assessment
 - Intermediate Results
 - Help text for each data entry field

Assessments

Explore energy savings opportunities

	-			· ·	Reheat Furnace Case Study				Diagram Report Sankey Calculate	
Last modified: System Setup Assessment Dia		gram Report Sankey Calculators		🗲 🗥	Explore Opportunities	Modify All Conditions				
Explore Opportunities	Modify All Condition	IS		Optimize Pump & Motor Comb	0	Novice View	Expert View			
Novice View	Expert View			Selected Scenario	View / Add Scenarios	Operations Charge Materials	Flue Gas O Fixture Wall O Cooli	ng ⁹ Atmosphere Opening ²	Leakage ⁰ Extended Surface Other	
SELECT POTENTIAL ADJUSTMENT PROJECTS		RESULTS	SANKEY	HELP	BASELINE		ALL OPPORTUNITIES	;		
Select potential adjustment projects to explore opportunities to increase efficiency and the effectiveness of your system				Baseline Opti	mize Pump & Motor Combo			▲ Loss #1		
	Add New Scenario					Cooling Medium	Water	Cooling Medium	Water •	
Modification Name		Optimize Pump & Motor Combo				Name of Cooling Medium	Water	Name of Cooling Medium	Water	
			Percent Savings (%)		9%	Average Specific Heat	1 Btu/(Ib-"F)	Average Specific Heat	1 Btu/(lb-°F)	
Install VFD						Density	8.338 Ib/gal	Density	8.336 Ib/gal	
Install More Effici	Install More Efficient Drive Type			_	0 / 0	Liquid Flow	3450 gal/min	Liquid Flow	3450 gal/min	
					*	Inict Temperature	77	Inlet Temperature	770 平	
Install More Effici	ient Pump		Pump efficiency (%)	81.8	87.5	Outlet Temperature			710	
Baseline Pump Type		End Suction ANSI/API	Motor rated power (hp)	150	150	Correction Easter	91 T	Iniet temperature is	s greater than outlet temperature	
Modification Pump Ty	/pe	End Suction ANSI/API	Motor shaft power (hp)	110.4	103.2	Conection Factor	1	Outlet Temperature	91 T	
Modification Pump Eff	ficiency	87.52 %	Pump shaft power (hp)	105.9	99	Loss #1 Total	24 1635 MMBtu/br	Injet temperature is greater than outlet temperature		
Known Efficiency			Motor efficiency (%)	93.4	96.4			met temperature i		
The efficiency of your pump has been calculated based on your flow rate and selected pump type. Click "Known: Efficiency" to use the efficiency calculated by your system setup. @ Reduce System Flow Rate		Motor power factor (%)	85	83.4			Correction Factor	1		
		Load factor (%)	74	69						
		Drive efficiency (%)	95.9	95.9			Loss #1 Total	-1,171.93 MMBtu/hr		
			Motor current (amps)	130.3	120.2			Cooling Total	-1.171.93 MMBtu/br	
Baseline Flow Rate		2500 gpm	Motor power (kW)	88.2	79.9					
Modification Flow Rat	te	2499.99 gpm	Annual Energy (MWh)	773	700					
R Poduco System H	load Doquiromont		Annual Energy Savings (MWh)	-	73					
Reduce System Head Requirement			Annual Cost	\$50,998	\$46,203					
Baseline Head		137 ft	Annual Savings	-	\$4,795					
Modification Head		137.01 ft								
Calculate Head										
Adjust Operationa	al Data									
Install More Effici	ient Motor									
Baseline Efficiency Cl	lass	Standard Efficiency 🔻								
Modification Efficiency	y Class	Premium Efficient								

- Explore Opportunities: build scenarios from preestablished energy savings measures
- Modify All Conditions: build scenarios using same forms as baseline

Reports

View side-by-side comparison of all scenarios and graphs for data visualization

Pum	ps								
Basic Pump Example	System Setup	Assessment Dia	igram Rep	port Sankey Calculators					
xplore Opportunities Modify All Conditio	ns				Optimize Pum	p & Motor Combo			
vice View Expert View			- P-	Example Pump		Curley Column	nant Diaman Danat Castrong	talaulatara	
SELECT POTENTIAL ADJUSTM	ENT PROJECTS		l l	Last modified: Aug 20, 2018		System Setup Assessi	nent Diagram Report Sankey C	aculators	
ect potential adjustment projects to explore opportuni Add N	ties to increase efficiency and the effectiv	eness of your system	_	Examples / Example Pump Last Modified Aug 20, 2019) 3, 1:36:08 PM				Print Export to CSV
Indification Name	Optimize Pump & Motor Combo			Beault Data Deport Creat	Cankou Inn	t Summany Facility Info			
Install VFD				Result Data Report Graph	s Sankey Inpl	a summary Pacinty Info			
Install More Efficient Drive Type					Baseline	Improve Belt, Motor and Pump Eff	PSAT Optimization	Adjust Fluid Temperature	Opportunities Modification
Install More Efficient Pump									
Baseline Pump Type	End Suction ANSI/API	т		Dercent Savings (8)					
Modification Pump Type	End Suction ANSI/API	٣		Fercent Savings (76)		9%	4%	1%	8%
Modification Pump Efficiency Known Efficiency	87.52 %					±	*	±	±
The efficiency of your pump has been calculated based on your flow rate and selected pump type. Click				Pump efficiency (%)	85.2	90	86.8	85.2	86.8
"Known Efficiency" to use the eff	nciency calculated by your system setup.			Motor rated power (hp)	200	200	100	200	100
Reduce System Flow Rate				Motor shaft power (hp)	99.6	94.3	97.8	98.5	93.8
Baseline Flow Rate	2500	gpm		Motor efficiency (%)	95.5	90.4	95.0	94.5	93.0
Modification Flow Rate	2499.99	apm		Motor power factor (%)	76.1	73.6	33.4 86.6	75.8	86.1
		34	Ar	Motor current (amps)	126.5	119.5	106.2	125.5	102.4
Reduce System Head Requirement				Motor power (kW)	80	73.1	76.5	79.2	73.3
Baseline Head	137	ft		Annual Energy (MWh)	701	640	670	693	642
Modification Head Calculate Head	137.01	ft		Annual Energy Savings (MWh)	-	60.5	31.1	7.41	59.0
Adjust Operational Data				Annual Cost (\$)	\$35,040	\$32,013	\$33,484	\$34,670	\$32,089
				Annual Savings (\$)	-	\$3,027	\$1,556	\$370	\$2,951
Install More Efficient Motor				Implementation Cost	-	-	-	-	-
Describes Efficiency Olass				Payback Period (months)	-	-	-	-	-

 Compute motor full load amps, load current and power factor, fluid head, and fan and motor efficiency

 Explore the savings from changing pump and motor efficiency (which can be optimized automatically), flow and head, or even fluid temperature

Fans RESULTS CALCULATE FLOW AND PRESSURES Return to Setup Use Static Pressure Use Total Pressure 2 INPUT PLANE DATA Fan Example Last modified: Aug 28, 201 ASSESSMENT DATA System Setup Assessment Diagram Report Sankey Calculators Inlet Pressure Explore Opportunities Modify All Conditions Reduce Pressure and Flow Outlet Pressure Expert Viev Selected Scenario Flow Rate Fluid Ean ● Motor • Field Data FULL PLANAR RESULTS REDUCE PRESSURE AND FLOW RESULTS HELP NOTES BASELINE 4 1 Plane # Gas Density Volume Flow Gas Velocity Reduce Pressure and Operating Fraction Operating Fraction lb/scf ft³/min ft/min Flow 0.0209268 379.792 5.834.67 3b Inlet Pressure Inlet Pressure -16.36 -19.19 2 0.0220295 361.787 9.541.64 Percent Savings (%) Outlet Pressure Outlet Pressure 3a 0.0208934 191 147 5.873.12 1 29 21% 3b 0.0209602 188.649 5.796.35 Flow Rate Flow Rate * 0.0209268 379 792 5 834 67 4 Load Estimation Method Specific Heat Ratio (v) Fan Energy Index 5 0.0135984 25 105 7 584 468 Fan efficiency (%) 63.4 Motor Power Compressibility Facto 0.98 i 1 2 3a 3b 4 5 450 Motor rated power (hp) Measured Voltage Motor shaft power (hp 454.7 Specific Heat Ratio (y) ination for a Fixed Specific Speed Optimize Pump and Motor cor Fan shaft power (hr 554.8 436.5 INPUT PITOT TUBE DIFFERENTIAL PRESSURE READINGS Compressibility Factor 0.988 Motor efficiency (9 95.8 Size Margin Motor power factor (% 85.7 83.8 Implementation Cost TRAVERSE HOLES Motor current (amps) 659.4 530.7 Motor por 354.4 POINTS Annual Energy (MWh) 3.942 3,104 0.662 0.568 0.546 0 564 0.463 0.507 0.865 1.17 1 2 4 7 1.63 Annual Energy Savings _ 838 0.603 0.75 1.014 0.639 0.542 0.53 0.57 0.965 1.246 1.596 (MWh) Annual Cost \$236,520 \$186,254 0.554 0.452 .453 581) 551 0.724 0.844 1.077 1.323 Annual Saving \$50,266 Finish and Return to Plane Data

- Compute motor full load amps, load current and power factor, pressure and flow from a traverse analysis, and fan and motor efficiency
- Explore the savings from changing fan and motor efficiency (which can be optimized automatically), flow and pressure, or even fluid characteristics

View Report

Pro	ocess F	leating	Explore Opportunities	Case Study Modify All Condition Expert View	s	System Setup	Assessment Diag		
					Select potential adjustment p	projects to explore opportunities to Add New	o increase efficiency and Scenario	I the effectiveness of	your system.
Electric Arc Furna Electric Arc Furnace (E	Ce FAF)	System Setup Assessment	Diagram Report Sankey Calculators		Modification Name	4 - Reduce O2 leve	I in flue gases		
Explore Opportunities Novice View Operations Charge Materials	Modify All Conditions Expert View Energy Input Fixture Wall	Cooling 9 Atmosphere Opening	Leakage Extended Surface Other O Sla	ag 💶 Exhaust (Baseline Oxygen Calculation	ei Ratio or Recommend Method Method	Oxygen in Flue Gas	Je Gas	v v
BASELINE Coss#1 Natural Gas Heat Input Calculate using flow rate Coal Carbon Injection	6.976 MMBtu/hr 3632.9999 [ibs/hr]	REDUCE SLAG Loss #1 Natural Gas Heat Input G.976 MMBtu/hr Calculate using flow rate Coal Carbon Injection 3632.9999 Ibs/hr Coal Carbon Injection 3632.9999 Ibs/hr Coal Larbon Nijection 			Baseline Oxygen in Flue Gas Modified Oxygen in Flue Gas Baseline Excess Air in Flue (Modified Oxygen in Flue Gas Proheat Combustion Air	s Gas s	6	36.52 % 09.90 %	%
Coal Heating Value Electrode Use Electrode Heating Value Other Fuels Electricty Input	9000 Btulb 2065 Ibs/hr 12000 Btu/h 0 MMBtu/hr 0 kW	Coal Heating Value Electrode Use Electrode Heating Value Other Fuels Electricty Input	9000 Btu/b 2065 Ibs/hr 12000 Btu/b 0 MMBtu/hr 0 kW	Cooling Losse Atmosphere L Opening Loss Leakage Loss Extended Surf Slag Losses Other Losses	 Preheat Charge Material Control and Optimize Fur Add / Improve Wall Insula 	nace Pressure ation			
Chemical Heat Delivered Electrical Heat Delivered Energy Input Total	18,889.4 kW 24,128.4 kW 43,017.7 kW	Chemical Heat Delivered Electrical Heat Delivered Energy Input Total	18,889.4 kW 23,446.0 kW 42,335.4 kW	Total Net Heat Exothermic He Exhaust Gas I Chemical Ene Gross Heat In	 Minimize Opening Size or Install curtains or radiation Minimize the Time Furnace 	r install tunnel-like exte on shields to reduce ope ce Doors are Open	nsions ening losses		
					Optimize or Improve Furn Adjust Operational Data	nace Cooling System			

- Calculate heat losses from several heater components
- Explore the savings from reducing flue gas oxygen or temperature, preheating air or charge materials, controlling furnace pressure, closing openings, etc.

Calculators

- 40+ Stand alone Calculators
 - Motors
 - Pumps
 - Fans
 - Process Heating
 - Steam
 - Compressed Air
 - Lighting
 - General

Better

 Most have graphical results

Example Calculators

Results and Accomplishments

- Community Engagement: Key Point want to engage end users!
- Tool Development Schedule
 - Systems completed:
 - Process Heat (PHAST)
 - Pumps (PSAT)
 - Fans (FSAT)
 - Under Development:
 - Steam (SSMT/SSAT) Jan 2019
 - Compressed Air (AirMaster+) May 2019
 - Motors (MotorMaster+) May 2019
- www.energy.gov/eere/amo/measur
- Ongoing Feedback link -<u>https://www.surveymonkey.com/r/DOE-AMO-</u> <u>TOOLS</u>

Transition (beyond DOE)

What will this effort help enable going forward?

- Open-Source Library Suite <u>https://github.com/ORNL-AMO</u>
 - Greater transparency
 - Future-proofing
 - New algorithms can be added to characterize other plant processes and equipment
 - Equipment providers can develop equipment specific databases that interface with the tool
- Library can be used to effectively test real-world equipment performance versus theoretic capabilities
- Leverage sensors for real-time data collection, monitoring and optimization
 - Leverage the Internet of Things devices coming online within manufacturing
- Enable real-time system analysis and optimization
 - Possibilities for exploring machine learning algorithms for system optimization

Acknowledgements

Subject Matter Experts

- <u>Don Casada</u>, Diagnostic Solutions, LLC
 - Developed the previous versions of PSAT and FSAT, and contributed the PSAT algorithms for this version.
- Arvind Thekdi, E3M, Inc.
 - Developed the previous versions of PHAST and contributed algorithms to this newer version of PHAST
- <u>Vern Martin, Mats Falk, Donovan Martin,</u> FLOWCARE Engineering Inc.
 - Contributed algorithms for the new version of FSAT
- <u>Ronald Wroblewski</u>, Productive Energy Solutions LLC
 - Contributed algorithms for the new version of FSAT

Programming & Engineering Support

Gina Accawi **Daryl Cox** Wei Guo Sachin Nimbalkar **Thomas Wenning** Kristina Armstrong Jon Hadden **Dmitry Howard** Michal Kaminski Subhankar Mishra Mark Root Asha Shibu **Preston Shires** Kiran Thirumaran **David Vance** Michael Whitmer Kyle Beanblossom Autumn Ferree Zach Fontenot Ben Rappoports. DEPARTMENT OF ENERGY Raul Rios

Questions & Discussion?

Thomas Wenning, PE wenningtj@ornl.gov https://energyefficiency.ornl.gov/

